1. Quantum System Initialization
Define a 4-qubit quantum system to encode the plaintext bitstring ∣0000⟩.
The most recent IBM backend calibration data is used to select the best-performing qubits based on coherence times T_1, T_2 and error rates.
A quantum register QR(4) and a classical register CR(4) are initialized.
2. Encoding the Plaintext
The target bitstring ∣0000⟩ is directly mapped onto the quantum register. In a general case, each qubit q_i corresponding to a '1' in the plaintext undergoes an X-gate transformation:
X∣0⟩ = ∣1⟩
Since the target bitstring is ∣0000⟩, no X-gates are applied. I'm working on more complex bitstrings next, wanted to start with something simple first.
3. Multi-Layer Quantum Encryption Process
Introduce 2 layers of encryption using entanglement and delayed-choice control.
Layer 1 - Entanglement Creation
Hadamard and CNOT gates generate EPR (Einstein-Podolsky-Rosen) pairs between adjacent qubits:
H∣0⟩ = 1/sqrt(2) * (∣0⟩ + ∣1⟩)
CNOT(∣ψ⟩ ⊗ ∣0⟩) = 1/sqrt(2) * (∣00⟩ + ∣11⟩)
This step introduces superposition and entanglement between qubits.
Layer 1 - Delayed-Choice Control
A control qubit (the last qubit in the layer) is placed in superposition:
H∣0⟩ = 1/sqrt(2) * (∣0⟩ + ∣1⟩)
This control qubit then conditionally modifies the other qubits using CCX (Toffoli) gates:
CCX(q_c, q_i, q_j)
This step ensures that the entanglement structure is dependent on the control qubit.
Layer 2 - Recursive Entanglement and Control
The process is repeated for the second layer, using different pairings of qubits.
The control logic is further reinforced by applying another Hadamard gate to the control qubit to finalize the entanglement decision.
Note: The control qubit determines whether multi qubit operations (CCX gates) are applied. These gates conditionally manipulate entangled qubits based on the state of the control qubit. If the control qubit collapses to ∣1⟩, specific multi-qubit operations are applied retroactively. If the control qubit collapses to ∣0⟩, the circuit effectively skips these operations. At this stage, future measurement outcomes of the control qubit decide which retrocausal pathways the quantum state evolves through.
4. Quantum Measurement and Decryption
All qubits are measured in the computational basis (∣0⟩, ∣1⟩) to extract classical results. This circuit uses 16384 shots. The probability of obtaining the target state ∣0000⟩ is computed from the observed counts.
5. Data Analysis and Visualization
The results are extracted and saved in a Json.
Key metrics analyzed:
Bitstring probability distribution
Hamming distance deviations
Error rates per qubit
Fourier transform of bitstring distributions
The experiment is visualized with a histogram.
Encryption Flow
Information Encoding
The plaintext bitstring (|0000⟩) is prepared as the initial state, akin to plaintext in classical encryption. This represents the input to the encryption process.
Layered Encryption
The circuit applies layers of quantum operations, including entanglement, CNOT gates, and controlled Toffoli gates (CCX), which scramble and distribute quantum information across multiple qubits. These operations are analogous to layers of encryption in classical cryptography.
Retrocausal Influence
The delayed-choice logic introduces a unique 'key-like' mechanism where the future measurement of control qubits retroactively influences the encoding operations.
Decryption Process
The measurement phase acts as a decryption step, collapsing the entangled quantum state and verifying whether the original plaintext (|0000⟩) can be recovered
Code:
# Imports
import numpy as np
import json
import pandas as pd
import logging
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
# Logging
logging.basicConfig(level=logging. INFO, format="%(asctime)s - %(message)s")
logger = logging.getLogger(__name__)
# Load Backend Calibration Data
def load_calibration_data(file_path):
logger. info("Loading calibration data from %s", file_path)
calibration_data = pd. read_csv(file_path)
calibration_data.columns = calibration_data.columns.str.strip()
logger. info("Calibration data loaded successfully")
return calibration_data
# Parse Calibration Data
def select_best_qubits(calibration_data, n_qubits):
logger. info("Selecting the best qubits based on T1, T2, and error rates")
qubits_sorted = calibration_data.sort_values(by=["√x (sx) error", "T1 (us)", "T2 (us)"], ascending=[True, False, False])
best_qubits = qubits_sorted["Qubit"].head(n_qubits).tolist()
logger. info("Selected qubits: %s", best_qubits)
return best_qubits
# Load Recent Calibration Data
calibration_file = '/Users/Downloads/ibm_kyiv_calibrations_2025-01-28T18_08_49Z.csv'
calibration_data = load_calibration_data(calibration_file)
# Select Best Qubits
num_qubits = 4
best_qubits = select_best_qubits(calibration_data, num_qubits)
# IBMQ
logger. info("Setting up IBM Q service")
service = QiskitRuntimeService(
channel="ibm_quantum",
instance="ibm-q/open/main",
token='Your_IBMQ_Key_O-`'
)
backend_name = "ibm_kyiv"
backend = service.backend(backend_name)
logger. info("Backend selected: %s", backend_name)
# Quantum and Classical Registers
qr = QuantumRegister(num_qubits, "q")
cr = ClassicalRegister(num_qubits, "c")
qc = QuantumCircuit(qr, cr)
# Prepare a specific bitstring (|0000>) as plaintext
plaintext_bitstring = "0000" # Target bitstring
logger. info(f"Preparing initial plaintext state: {plaintext_bitstring}")
for i, bit in enumerate(plaintext_bitstring):
if bit == "1":
qc.x(qr[i]) # Apply X gate to set qubit to |1>
logger. info("Plaintext state prepared successfully")
# Encryption Layer Setup
layers = 2
logger. info("Setting up %d layer of retrocausal encryption", layers)
# Define Retrocausal Logic
start, end = 0, num_qubits
# Create EPR pairs within the layer
for i in range(start, end - 1, 2):
qc.h(qr[i])
qc. cx(qr[i], qr[i + 1])
# Add delayed choice control qubit
control_qubit = end - 1
qc.h(qr[control_qubit])
# Delayed choice controlled operations
for i in range(start, end - 2, 2):
qc.ccx(qr[control_qubit], qr[i], qr[i + 1])
# Finalize retrocausal decision
qc.h(qr[control_qubit])
# Measurement for Decryption Verification
logger. info("Adding measurement for decryption verification")
qc.measure(qr, cr)
# Transpile
logger. info("Transpiling the quantum circuit for the backend")
qc_transpiled = transpile(qc, backend=backend, optimization_level=3)
logger. info("Circuit transpilation complete")
# Execute
shots = 16384
with Session(service=service, backend=backend) as session:
sampler = SamplerV2(session=session)
logger. info("Executing the circuit on the backend")
job = sampler. run([qc_transpiled], shots=shots)
job_result = job.result()
# Extract counts
data_bin = job_result._pub_results[0]['__value__']['data']
if 'c' in data_bin:
counts = data_bin['c'].get_counts()
else:
raise KeyError("No valid key found in data_bin to extract counts.")
# Save Json
results_data = {
"experiment_name": "Multi-Layer Retrocausal Encryption",
"raw_counts": counts
}
output_file = '/Users/Documents/Multi_Layer_Retrocausal_Encryption_0.json'
with open(output_file, "w") as f:
json.dump(results_data, f, indent=4)
logger. info(f"Results saved to {output_file}")
# Visual
plot_histogram(counts)
plt.title("Multi-Layer Retrocausal Encryption")
plt. show()
Code For All Visuals
# Imports
import json
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.fft import fft
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
from scipy.stats import entropy
# Load Results
file_path = '/Users/Documents/Multi_Layer_Retrocausal_Encryption_0.json'
with open(file_path, 'r') as f:
results_data = json.load(f)
# Extract counts
counts = results_data["raw_counts"]
total_shots = sum(counts.values())
total_counts = sum(counts.values())
normalized_counts = {key: value / total_counts for key, value in counts.items()}
# Sort bitstrings by frequency
sorted_bitstrings = sorted(normalized_counts.keys(), key=lambda x: normalized_counts[x], reverse=True)
sorted_probabilities = [normalized_counts[b] for b in sorted_bitstrings]
# Generate indices for bitstrings
bitstring_indices = np.arange(len(sorted_bitstrings))
# Normalize to probabilities
total_counts = sum(counts.values())
normalized_counts = {key: value / total_counts for key, value in counts.items()}
# Target Bitstring
target_state = "0000"
# Convert to sorted lists for plotting
sorted_bitstrings = sorted(normalized_counts.keys(), key=lambda x: normalized_counts[x], reverse=True)
sorted_probs = [normalized_counts[key] for key in sorted_bitstrings]
# Histogram of Raw Counts
plt.figure(figsize=(12, 6))
plt. bar(counts.keys(), counts.values(), color='blue', alpha=0.7)
plt.xticks(rotation=90, fontsize=10)
plt.xlabel("Bitstring")
plt.ylabel("Counts")
plt.title("Histogram of Measurement Outcomes")
plt.tight_layout()
plt. show()
# Normalized Probability Distribution
plt.figure(figsize=(12, 6))
plt. bar(sorted_bitstrings, sorted_probs, color='green', alpha=0.7)
plt.axhline(y=normalized_counts.get('0000', 0), color='red', linestyle='--', label="Target |0000⟩")
plt.xticks(rotation=90, fontsize=10)
plt.xlabel("Bitstring")
plt.ylabel("Probability")
plt.title("Normalized Probability Distribution")
plt.legend()
plt.tight_layout()
plt. show()
# Heatmap of Bitstring Deviations
bit_length = 4 # Using 4 qubits
bitstring_matrix = np.array([list(map(int, list(bs))) for bs in sorted_bitstrings])
heatmap_data = np.zeros((bit_length, len(sorted_bitstrings)))
for i in range(bit_length):
heatmap_data[i, :] = bitstring_matrix[:, i] * sorted_probs
plt.figure(figsize=(10, 6))
sns.heatmap(heatmap_data, cmap="coolwarm", xticklabels=sorted_bitstrings, yticklabels=[f'Qubit {i}' for i in range(bit_length)], cbar=True)
plt.xlabel("Bitstrings")
plt.ylabel("Qubit Index")
plt.title("Heatmap of Bitstring Deviations")
plt.xticks(rotation=90, fontsize=8)
plt.tight_layout()
plt. show()
# State Frequency Correlation Plot
plt.figure(figsize=(12, 6))
plt.scatter(range(len(sorted_probs)), sorted_probs, c='purple', alpha=0.7)
plt.axhline(y=normalized_counts.get('0000', 0), color='red', linestyle='--', label="Target |0000⟩")
plt.xlabel("Sorted Bitstring Index")
plt.ylabel("Probability")
plt.title("State Frequency Correlation")
plt.legend()
plt.tight_layout()
plt. show()
# Cumulative Probability Distribution
sorted_probs = sorted([val / total_shots for val in counts.values()], reverse=True)
cumulative_probs = np.cumsum(sorted_probs)
plt.figure(figsize=(10, 6))
plt.plot(cumulative_probs, marker='o', linestyle='-')
plt.title("Cumulative Probability Distribution")
plt.xlabel("Sorted Bitstrings (Ranked)")
plt.ylabel("Cumulative Probability")
plt.grid()
plt. show()
# Hamming Distance Distribution
def hamming_distance(s1, s2):
return sum(c1 != c2 for c1, c2 in zip(s1, s2))
hamming_counts = {}
for bitstring, count in counts.items():
distance = hamming_distance(bitstring, target_state)
hamming_counts[distance] = hamming_counts.get(distance, 0) + count
plt.figure(figsize=(10, 6))
plt. bar(hamming_counts.keys(), [val / total_shots for val in hamming_counts.values()], color='purple', alpha=0.7)
plt.title("Hamming Distance Distribution from Target |0000>")
plt.xlabel("Hamming Distance")
plt.ylabel("Probability")
plt.xticks(range(5))
plt.grid()
plt. show()
# Error Rate Per Qubit (Bitwise Flip Probabilities)
num_qubits = len(target_state)
bitwise_error_rates = np.zeros(num_qubits)
for bitstring, count in counts.items():
for i in range(num_qubits):
if bitstring[i] != target_state[i]: # Flip occurred
bitwise_error_rates[i] += count
bitwise_error_rates /= total_shots # Normalize
plt.figure(figsize=(10, 6))
plt. bar(range(num_qubits), bitwise_error_rates, color='red', alpha=0.7)
plt.title("Error Rate Per Qubit (Bitwise Flip Probabilities)")
plt.xlabel("Qubit Index")
plt.ylabel("Error Probability")
plt.xticks(range(num_qubits))
plt.grid()
plt. show()
# Fourier Transform of Bitstring Frequencies
bitstring_frequencies = np.array(list(counts.values()))
fft_values = np.abs(fft(bitstring_frequencies))
plt.figure(figsize=(10, 6))
plt.plot(fft_values[:len(fft_values)//2], marker='o', linestyle='-') # Show only first half (symmetry)
plt.title("Fourier Transform of Bitstring Frequencies")
plt.xlabel("Frequency Index")
plt.ylabel("Amplitude")
plt.grid()
plt. show()
# Quantum Entropy Distribution (3D Surface Plot)
entropy_values = [-p * np.log2(p) if p > 0 else 0 for p in sorted_probabilities]
X, Y = np.meshgrid(bitstring_indices, bitstring_indices)
Z = np.array([entropy_values] * len(bitstring_indices))
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, cmap='inferno', edgecolor='none')
ax.set_xlabel("Bitstring Index")
ax.set_ylabel("Bitstring Index")
ax.set_zlabel("Entropy")
ax.set_title("Quantum Entropy Distribution")
plt. show()
# Qubit Correlation Matrix (3D Heatmap)
qubit_matrix = np.zeros((4, 4)) # Assuming 4 qubits
for bitstring, prob in normalized_counts.items():
for i in range(4):
for j in range(4):
if bitstring[i] == bitstring[j]:
qubit_matrix[i, j] += prob # Track correlation probability
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
xpos, ypos = np.meshgrid(range(4), range(4))
ax.bar3d(xpos.ravel(), ypos.ravel(), np.zeros_like(qubit_matrix).ravel(),
dx=0.5, dy=0.5, dz=qubit_matrix.ravel(), shade=True)
ax.set_xlabel("Qubit Index")
ax.set_ylabel("Qubit Index")
ax.set_zlabel("Correlation")
ax.set_title("Qubit Correlation 3D Heatmap")
plt. show()
# Phase Space Representation of Bitstrings (Bloch Projection)
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
theta_vals = np.linspace(0, np.pi, len(sorted_bitstrings))
phi_vals = np.linspace(0, 2 * np.pi, len(sorted_bitstrings))
radii = np.array(sorted_probabilities)
x = radii * np.sin(theta_vals) * np.cos(phi_vals)
y = radii * np.sin(theta_vals) * np.sin(phi_vals)
z = radii * np.cos(theta_vals)
ax.scatter(x, y, z, c=radii, cmap='coolwarm', alpha=0.9)
ax.set_xlabel("X (Real)")
ax.set_ylabel("Y (Imaginary)")
ax.set_zlabel("Probability")
ax.set_title("3D Phase Space Projection of Bitstrings")
plt. show()
# Quantum State Density Over Time (3D Surface)
time_steps = np.linspace(0, 10, len(sorted_bitstrings))
X, Y = np.meshgrid(time_steps, bitstring_indices)
Z = np.array([sorted_probabilities] * len(time_steps))
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, cmap='plasma', edgecolor='none')
ax.set_xlabel("Time Steps")
ax.set_ylabel("Bitstring Index")
ax.set_zlabel("Probability")
ax.set_title("Quantum State Density Evolution Over Time")
plt. show()
# End