1. Problem
Einstein’s field equations describe the curvature of spacetime due to mass-energy:
R_μν - 1/2g_μν R + Λg_μν = (8πG)/(c^4) T_μν
Here, G is the gravitational constant, and c is the speed of light. The Superforce is the reciprocal of (8πG)/(c^4):
F_Planck = (c^4)/G
It represents the maximum theoretical force in nature and provides the scale for spacetime distortions.
A Bell state is used as the starting point for this experiment because it maximally entangles two qubits. The Bell state is given by:
∣ψ⟩ = 1/sqrt(2) * (∣10⟩ + ∣01⟩)
2. Setup the Quantum Circuit
A quantum register qr of 2 qubits and a classical register cr of 2 bits are initialized.
The Bell state is created:
Apply a Hadamard gate H to the first qubit:
H ∣0⟩ = 1/sqrt(2) * (∣0⟩+∣1⟩)
Apply a controlled-X (CNOT) gate between the first and second qubits:
CNOT(∣ψ⟩ ⊗ ∣0⟩) = 1/sqrt(2) * (∣10⟩ + ∣01⟩)
3. Spacetime Distortions
A distortion function is defined to model the effect of spacetime curvature:
F_distortion = f * F_Planck
where f is the fraction of the Superforce. The distortion is applied using rotation gates:
RX(θ) = [ cos(θ/2), -i sin(θ/2)
-i sin(θ/2), cos(θ/2) ]
with θ = ((F_distortion)/(1 * 10^30)) * π/4
Similar rotations are applied using RY and RZ gates with scaled angles:
RY: θ = ((F_distortion)/(1 * 10^30)) * π/5
RZ: θ = ((F_distortion)/(1 * 10^30)) * π/3
Three distortion strengths are tested: f = 0.1, 0.5, 1.0.
4. Noise Model
Noise proportional to the distortion strength is added:
F_noise = f * F_Planck
RX and RY gates are applied with scaled noise angles to simulate environmental noise.
5. Measurement
The circuit measures both qubits, and the results are stored in the classical register. Counts for each computational basis state (∣00⟩, ∣01⟩, ∣10⟩, ∣11⟩) are extracted.
6. Execution and Results
The circuit is transpiled for ibm_sherbrooke with optimization level 3. For each distortion strength f, the circuit is executed independently with 16,384 shots. Results are saved to three Json files.
7. Analysis
The normalized counts for each state (∣00⟩, ∣01⟩, ∣10⟩, ∣11⟩) are analyzed. The absolute difference between ∣10⟩ and ∣01⟩ probabilities is calculated to quantify directional bias:
Asymmetry = ∣ P(∣10⟩) − P(∣01⟩) ∣
Entanglement entropy is computed using the formula:
S = −∑(p_i)log_2(p_i),
i
where p_i is the probability of state i.
Code:
# Imports
import numpy as np
import json
import pandas as pd
import logging
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2
from qiskit.visualization import plot_histogram
from scipy.linalg import expm
import matplotlib.pyplot as plt
# Logging
logging.basicConfig(level=logging. INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load calibration data
def load_calibration_data(file_path):
logger. info("Loading calibration data from %s", file_path)
calibration_data = pd. read_csv(file_path)
calibration_data.columns = calibration_data.columns.str.strip()
logger. info("Calibration data loaded successfully")
return calibration_data
# Select best qubits
def select_best_qubits(calibration_data, n_qubits):
logger. info("Selecting the best qubits based on T1, T2, and error rates")
qubits_sorted = calibration_data.sort_values(by=['\u221ax (sx) error', 'T1 (us)', 'T2 (us)'], ascending=[True, False, False])
best_qubits = qubits_sorted['Qubit'].head(n_qubits).tolist()
logger. info("Selected qubits: %s", best_qubits)
return best_qubits
# Load most recent calibration data
calibration_file = '/Users/Downloads/ibm_sherbrooke_calibrations_2025-01-06T17_46_19Z.csv'
calibration_data = load_calibration_data(calibration_file)
# Select best qubits for the experiment
n_qubits = 2
best_qubits = select_best_qubits(calibration_data, n_qubits)
# IBMQ
logger. info("Setting up IBM Q service")
service = QiskitRuntimeService(
channel='ibm_quantum',
instance='ibm-q/open/main',
token='YOUR_IBMQ_API_KEY_O-`'
)
backend_name = 'ibm_sherbrooke'
backend = service.backend(backend_name)
logger. info("Backend selected: %s", backend_name)
# Quantum and classical registers
qr = QuantumRegister(n_qubits, 'q')
cr = ClassicalRegister(n_qubits, 'c')
# Superforce constant
c = 3e8 # Speed of light (m/s)
G = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
superforce = c**4 / G # Maximum theoretical force (N)
logger. info("Superforce value: %e N", superforce)
# A distortion function based on the Superforce
def spacetime_distortion_with_superforce(qc, qubit, force_fraction):
"""Apply spacetime distortion proportional to a fraction of the superforce."""
distortion_strength = force_fraction * superforce
# Scale the distortion strength for the quantum circuit gates
scaled_angle = distortion_strength / (1e30)
qc.rx(scaled_angle * np.pi / 4, qubit)
qc.rz(scaled_angle * np.pi / 3, qubit)
qc.ry(scaled_angle * np.pi / 5, qubit)
logger. info("Applied spacetime distortion with scaled angle: %f", scaled_angle)
# Noise model
def apply_force_scaled_noise(qc, qubit, force_fraction):
"""Apply noise scaled to the fraction of the superforce."""
noise_strength = force_fraction * superforce
scaled_noise = noise_strength / (1e30)
qc.rx(scaled_noise * np.pi / 2, qubit)
qc.ry(scaled_noise * np.pi / 4, qubit)
logger. info("Applied noise to qubit %s with scaled noise: %f", qubit, scaled_noise)
# Apply distortions and save results
distortion_strengths = [0.1, 0.5, 1.0]
for fraction in distortion_strengths:
# Create a fresh quantum circuit for each distortion strength
qc = QuantumCircuit(qr, cr)
# Create Bell state
qc.h(qr[0])
qc. cx(qr[0], qr[1])
# Apply spacetime distortion
spacetime_distortion_with_superforce(qc, qr[1], fraction)
# Apply noise
apply_force_scaled_noise(qc, qr[1], fraction)
# Measure
qc.measure(qr, cr)
# Transpile
qc_transpiled = transpile(qc, backend=backend, optimization_level=3)
# Execute
with Session(service=service, backend=backend) as session:
sampler = SamplerV2(session=session)
logger. info("Executing the circuit on the backend for distortion strength: %f", fraction)
job = sampler. run([qc_transpiled], shots=16384)
job_result = job.result()
# Extract counts
data_bin = job_result._pub_results[0]['__value__']['data']
if 'c' in data_bin:
counts = data_bin['c'].get_counts()
else:
raise KeyError("No valid key found in data_bin to extract counts.")
# Save results to separate Jsons
results_data = {
"distortion_strength": fraction,
"raw_counts": counts
}
output_file = f'/Users/Documents/Entanglement_Dynamics_Curved_Spacetime_SF_{fraction}.json'
with open(output_file, 'w') as f:
json.dump(results_data, f, indent=4)
logger. info(f"Results for distortion {fraction} saved to {output_file}")
////////////////////
Code For all Visuals from Run Data
# Imports
import json
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Load run results
file_paths = [
'/Users/Documents/Entanglement_Dynamics_Curved_Spacetime_SF_0.1.json',
'/Users/Documents/Entanglement_Dynamics_Curved_Spacetime_SF_0.5.json',
'/Users/Documents/Entanglement_Dynamics_Curved_Spacetime_SF_1.0.json'
]
# Distortion strengths corresponding to the file paths
distortion_strengths = [0.1, 0.5, 1.0]
# Load run data
results = []
for path in file_paths:
with open(path, 'r') as f:
results.append(json.load(f))
# Extract raw counts and normalize probabilities for each distortion strength
state_labels = list(results[0]["raw_counts"].keys())
probabilities = []
entropies = []
asymmetries = []
cumulative_entangled_probs = []
probability_ratios = []
coherence_losses = []
for result in results:
counts = np.array(list(result["raw_counts"].values()))
total_counts = counts.sum()
probs = counts / total_counts
probabilities.append(probs)
# Entropy
entropy = -np.sum(probs * np.log2(probs + 1e-10)) # Avoid log(0)
entropies.append(entropy)
# Cumulative probabilities of entangled states
entangled_prob = probs[state_labels.index("10")] + probs[state_labels.index("01")]
cumulative_entangled_probs.append(entangled_prob)
# Probability ratio between |10> and |01>
prob_ratio = probs[state_labels.index("10")] / (probs[state_labels.index("01")] + 1e-10) # Avoid division by 0
probability_ratios.append(prob_ratio)
# Coherence loss (difference between entangled and non-entangled probabilities)
coherence_loss = abs(entangled_prob - (probs[state_labels.index("00")] + probs[state_labels.index("11")]))
coherence_losses.append(coherence_loss)
# Asymmetry
asymmetry = abs(probs[state_labels.index("10")] - probs[state_labels.index("01")])
asymmetries.append(asymmetry)
# Convert probabilities to a numpy array for easier manipulation
probabilities = np.array(probabilities)
asymmetries = np.array(asymmetries)
entropies = np.array(entropies)
# State Probability Distribution for Each Distortion
plt.figure(figsize=(10, 6))
for i, (f, probs) in enumerate(zip(distortion_strengths, probabilities)):
plt. bar(np.arange(len(state_labels)) + i * 0.25, probs, width=0.25, label=f"f = {f}")
plt.xticks(np.arange(len(state_labels)) + 0.25, state_labels)
plt.xlabel('States')
plt.ylabel('Probability')
plt.title('State Probability Distribution Across Distortions')
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.6)
plt. show()
# Asymmetry Across Distortions
plt.figure(figsize=(8, 5))
plt.plot(distortion_strengths, asymmetries, marker='o', color='orange', label="Asymmetry")
plt.xlabel('Distortion Strength (f)')
plt.ylabel('Asymmetry (|P(|10⟩) - P(|01⟩)|)')
plt.title('Asymmetry Across Distortion Strengths')
plt.grid(linestyle='--', alpha=0.6)
plt.legend()
plt. show()
# Entanglement Entropy Across Distortions
plt.figure(figsize=(8, 5))
plt.plot(distortion_strengths, entropies, marker='o', color='green', label="Entropy")
plt.xlabel('Distortion Strength (f)')
plt.ylabel('Entropy (bits)')
plt.title('Entanglement Entropy Across Distortion Strengths')
plt.grid(linestyle='--', alpha=0.6)
plt.legend()
plt. show()
# State Evolution Across Distortions
plt.figure(figsize=(10, 6))
width = 0.25
for i, state in enumerate(state_labels):
plt. bar(np.arange(len(distortion_strengths)) + i * width, probabilities[:, i], width=width, label=state)
plt.xticks(np.arange(len(distortion_strengths)) + 0.5 * width, [f"f = {f}" for f in distortion_strengths])
plt.xlabel('Distortion Strength (f)')
plt.ylabel('Probability')
plt.title('State Evolution Across Distortion Strengths')
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.6)
plt. show()
# Cumulative Probability of Entangled States
plt.figure(figsize=(8, 5))
plt.plot(distortion_strengths, cumulative_entangled_probs, marker='o', color='blue', label="Cumulative Entangled Prob.")
plt.xlabel('Distortion Strength (f)')
plt.ylabel('Cumulative Probability')
plt.title('Cumulative Probability of Entangled States')
plt.grid(linestyle='--', alpha=0.6)
plt.legend()
plt. show()
# Probability Ratios (|10⟩ / |01⟩)
plt.figure(figsize=(8, 5))
plt.plot(distortion_strengths, probability_ratios, marker='o', color='purple', label="Probability Ratio |10⟩ / |01⟩")
plt.xlabel('Distortion Strength (f)')
plt.ylabel('Ratio')
plt.title('Probability Ratios (|10⟩ / |01⟩) Across Distortions')
plt.grid(linestyle='--', alpha=0.6)
plt.legend()
plt. show()
# Entropy Change Rate
entropy_change_rate = np.gradient(entropies, distortion_strengths) # Derivative of entropy
plt.figure(figsize=(8, 5))
plt.plot(distortion_strengths, entropy_change_rate, marker='o', color='green', label="Entropy Change Rate")
plt.xlabel('Distortion Strength (f)')
plt.ylabel('Change Rate')
plt.title('Rate of Entropy Change Across Distortions')
plt.grid(linestyle='--', alpha=0.6)
plt.legend()
plt. show()
# State Coherence Analysis
plt.figure(figsize=(8, 5))
plt.plot(distortion_strengths, coherence_losses, marker='o', color='orange', label="State Coherence Loss")
plt.xlabel('Distortion Strength (f)')
plt.ylabel('Coherence Loss')
plt.title('State Coherence Analysis Across Distortions')
plt.grid(linestyle='--', alpha=0.6)
plt.legend()
plt. show()
# Heatmap of State Probabilities
plt.figure(figsize=(10, 6))
plt.imshow(probabilities.T, cmap='viridis', aspect='auto', interpolation='nearest',
extent=[distortion_strengths[0], distortion_strengths[-1], 0, len(state_labels)])
plt.colorbar(label='Probability')
plt.yticks(np.arange(len(state_labels)), state_labels)
plt.xlabel('Distortion Strength (f)')
plt.ylabel('States')
plt.title('Heatmap of State Probabilities Across Distortions')
plt. show()
# 3D Surface Plot of State Probabilities
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
X, Y = np.meshgrid(distortion_strengths, np.arange(len(state_labels)))
Z = probabilities.T
ax.plot_surface(X, Y, Z, cmap='plasma', edgecolor='k', linewidth=0.3)
ax.set_xticks(distortion_strengths)
ax.set_xticklabels([f"f = {f}" for f in distortion_strengths])
ax.set_yticks(np.arange(len(state_labels)))
ax.set_yticklabels(state_labels)
ax.set_xlabel('Distortion Strength (f)')
ax.set_ylabel('States')
ax.set_zlabel('Probability')
ax.set_title('3D Surface Plot of State Probabilities')
plt. show()
# Heatmap of Asymmetry
plt.figure(figsize=(10, 6))
asymmetry_matrix = np.tile(asymmetries, (len(state_labels), 1)).T
plt.imshow(asymmetry_matrix, cmap='coolwarm', aspect='auto', interpolation='nearest',
extent=[distortion_strengths[0], distortion_strengths[-1], 0, len(state_labels)])
plt.colorbar(label='Asymmetry')
plt.yticks([])
plt.xlabel('Distortion Strength (f)')
plt.title('Heatmap of Asymmetry Across Distortions')
plt. show()
# 3D Surface Plot of Entanglement Entropy
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
X, Y = np.meshgrid(distortion_strengths, [0]) # Single layer for entropy
Z = np.tile(entropies, (1, len(state_labels))).T
ax.plot_surface(X, Y, Z, cmap='cividis', edgecolor='k', linewidth=0.3)
ax.set_xticks(distortion_strengths)
ax.set_xticklabels([f"f = {f}" for f in distortion_strengths])
ax.set_yticks([])
ax.set_zticks(np.linspace(min(entropies), max(entropies), 5))
ax.set_xlabel('Distortion Strength (f)')
ax.set_ylabel('Entropy Layer')
ax.set_zlabel('Entropy (bits)')
ax.set_title('3D Surface Plot of Entanglement Entropy')
plt. show()
# End