1. Problem
The goal is to factorize n = 95 into its components, p and q, where n = p * q. This experiment chooses a = 2, a co-prime base to n, to construct the periodic modular function:
f(x) = a^x mod n
2. Backend Calibration
Calibration data from ibm_brisbane gives data about qubit coherence times (T_1, T_2), gate fidelities (sqrt(x)-gate and CNOT errors), and readout assignment errors. The best-performing 32 qubits are selected based on:
Ranking Metric = Minimize Gate Error, Maximize T_1 and T_2
3. Quantum Circuit
A quantum register with num_qubits is used for the quantum operations. A classical register of the same size records the measurement outcomes. This applies Hadamard Gates to create a superposition state over the first half of the qubits:
(2^(n/2)) - 1
1/sqrt(2^(n/2)) ∑ ∣x⟩
x = 0
For controlled modular exponentiation, this computes f(x) = a^x mod n using controlled operations. For each qubit in the control register, modular multiplication is applied to the target qubits. Modular reduction makes sure the result is bounded by n.
Then perform the Quantum Fourier Transform on the superposition state to determine the period r:
(2^(n/2)) - 1
∣x⟩ → (1/sqrt(2^(n/2))) ∑ e^(2πi * (kx)/(2^(n/2)) ∣k⟩
x = 0
Then, measure the quantum state and record the outcomes in the classical register.
4. Modular Arithmetic
For each control qubit i:
∣y⟩ → ∣(y * a^(2^i) mod n)⟩
Ancillary qubits are used to handle modular reduction, making sure the result is within bounds. Subtract n conditionally if the value exceeds n, and reset the ancillary qubits for reuse.
5. Optimize the Circuit
The circuit is transpiled and optimized for ibm_brisbane.
6. Execution
The circuit is executed on IBM's ibm_brisbane with 16,384 shots.
7. Post-Processing
The measurement outcomes are stored as bitstrings corresponding to potential periods of f(x) = a^x mod n. The period r of the modular function is determined from the measurement results. Using the period r, the factors of n are computed as:
p = gcd(a^(r/2) − 1, n)
q = gcd(a^(r/2) + 1, n)
Code:
# Imports
import numpy as np
import pandas as pd
import json
import logging
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2
from qiskit.circuit.library import QFT
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
# Logging
logging.basicConfig(level=logging. INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Calibration file path
calibration_file = '/Users/Downloads/ibm_brisbane_calibrations_2025-01-11T01_36_45Z.csv'
# Load calibration data
def load_calibration_data(file_path):
logger. info("Loading calibration data from %s", file_path)
calibration_data = pd. read_csv(file_path)
calibration_data.columns = calibration_data.columns.str.strip() # Strip spaces
logger. info("Calibration data loaded successfully")
return calibration_data
# Parse calibration data and select best qubits
def select_best_qubits(calibration_data, num_qubits):
logger. info("Selecting the best qubits based on T1, T2, and error rates")
sort_columns = ['√x (sx) error', 'T1 (us)', 'T2 (us)']
# Columns check
for col in sort_columns:
if col not in calibration_data.columns:
raise KeyError(f"Column '{col}' not found in calibration data. Check your CSV file.")
sorted_qubits = calibration_data.sort_values(
by=sort_columns,
ascending=[True, False, False]
)
best_qubits = sorted_qubits['Qubit'].head(num_qubits).tolist()
logger. info("Selected qubits: %s", best_qubits)
return best_qubits
# Modular Multiplication
def modular_multiplication(qc, a, n, control_qubit, target_qubits, ancillary_qubits):
"""
Implements modular multiplication |y⟩ -> |(y * a mod n)⟩ using explicit controlled gates.
"""
num_target_qubits = len(target_qubits)
# Apply controlled NOT gates to set up for modular multiplication by 'a'
for i in range(num_target_qubits):
qc. cx(control_qubit, target_qubits[i])
# Modular reduction
for i in range(num_target_qubits):
qc.ccx(control_qubit, target_qubits[i], ancillary_qubits[i])
# Reset ancillary qubits
for i in range(len(ancillary_qubits)):
qc. cx(control_qubit, ancillary_qubits[i])
# IBMQ
service = QiskitRuntimeService(
channel='ibm_quantum',
instance='ibm-q/open/main',
token='YOUR_IBMQ_API_KEY_O-`'
)
backend_name = 'ibm_brisbane'
backend = service.backend(backend_name)
logger. info("Backend selected: %s", backend_name)
# Shors circuit
def create_shors_circuit(n, a, num_qubits):
logger. info(f"Creating Shor's circuit for factoring {n} with base {a} and {num_qubits} qubits")
qc = QuantumCircuit(num_qubits, num_qubits)
# Apply Hadamard gates to create superposition
for i in range(num_qubits // 2):
qc.h(i)
# Controlled Modular Exponentiation: f(a, x) = a^x mod n
def modular_exponentiation(qc, a, n, control_qubits, target_qubits, ancillary_qubits):
"""
Implements modular exponentiation: U|x⟩ = |a^x mod n⟩.
"""
for i, control_qubit in enumerate(control_qubits):
# Modular multiplication controlled by the i-th qubit in control register
modular_multiplication(qc, a**(2**i) % n, n, control_qubit, target_qubits, ancillary_qubits)
# Control, target, and ancillary qubits
control_qubits = range(num_qubits // 2)
target_qubits = range(num_qubits // 2, num_qubits - (num_qubits // 2))
ancillary_qubits = range(num_qubits - len(target_qubits), num_qubits)
# Modular exponentiation
modular_exponentiation(qc, a, n, control_qubits, target_qubits, ancillary_qubits)
# QFT on the first half
qc.append(QFT(num_qubits // 2).to_gate(), range(num_qubits // 2))
# Measurement
qc.measure(range(num_qubits // 2), range(num_qubits // 2))
return qc
# Transpile / optimize
def optimize_circuit(qc, backend):
logger. info("Transpiling the circuit for the backend")
qc_transpiled = transpile(qc, backend=backend, optimization_level=3)
logger. info("Circuit transpilation complete")
return qc_transpiled
# Run Shors / shots
def run_shors_experiment(n, a, num_qubits, calibration_data, shots=16384):
logger. info(f"Running Shor's algorithm to factor {n} with base {a}")
# Select best qubits based on calibration data
best_qubits = select_best_qubits(calibration_data, num_qubits)
# Create / optimize
qc = create_shors_circuit(n, a, num_qubits)
qc_transpiled = optimize_circuit(qc, backend)
# Execute
with Session(service=service, backend=backend) as session:
sampler = SamplerV2(session=session)
logger. info("Executing the circuit on the backend")
job = sampler. run([qc_transpiled], shots=shots)
job_result = job.result()
# Data_bin
data_bin = job_result._pub_results[0]['__value__']['data']
# Parse data from 'c'
bit_array = data_bin['c'] # Extract the BitArray object
counts = bit_array.get_counts() # Use get_counts method to extract counts
# Results
result_file_path = f'/Users/Documents/Shors_95_0.json'
with open(result_file_path, 'w') as f:
json.dump(counts, f, indent=4)
logger. info(f"Results saved to {result_file_path}")
# Plot
plot_histogram(counts)
plt.title(f"Results for Shor's Algorithm (n={n})")
plt. show()
return counts
# Calibration
logger. info("Loading calibration data")
calibration_data = load_calibration_data(calibration_file)
# Parameters
n = 95
a = 2
num_qubits = 32
# Result
result = run_shors_experiment(n, a, num_qubits, calibration_data)
/////////////////////////
Code to Test Results to Find Factors
# Imports
import json
import numpy as np
from math import gcd
# Load the Json
file_path = '/Users/Documents/Shors_95_0.json'
with open(file_path, 'r') as file:
data = json.load(file)
# Convert binary strings to decimal
counts = {int(key, 2): value for key, value in data.items()}
# Sort by frequency to analyze the most likely results
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
# Display the top results
print("Top results (decimal):")
for result, count in sorted_counts[:10]:
print(f"Value: {result}, Count: {count}")
# Parameters
n = 95
a = 2
observed_values = [key for key, _ in sorted_counts[:10]]
# Compute candidate periods and factors
for observed in observed_values:
r = observed # Period candidate
if r != 0:
# Calculate the factors using the observed period
factor1 = gcd(a**(r//2) - 1, n)
factor2 = gcd(a**(r//2) + 1, n)
print(f"Observed: {observed}, Factors: {factor1}, {factor2}")
# Verify if these are valid factors
if factor1 * factor2 == n:
print(f"Valid factors found: {factor1}, {factor2}")
//////////////////
Code for All Visuals from Run Data
# Imports
import numpy as np
import matplotlib.pyplot as plt
import json
from mpl_toolkits.mplot3d import Axes3D
# Load run results
file_path = '/Users/Documents/Shors_95_0.json'
with open(file_path, 'r') as f:
results = json.load(f)
# Parse results
bitstrings = list(results.keys())
counts = np.array(list(results.values()), dtype=int)
decimal_values = [int(b, 2) for b in bitstrings]
# Bitstring Decoding Plot
plt.figure(figsize=(10, 6))
plt.scatter(decimal_values, counts, color='green', alpha=0.7)
plt.xlabel("Decimal Value of Bitstring")
plt.ylabel("Frequency")
plt.title("Decoded Bitstring Distribution")
plt.grid(True, linestyle='--', alpha=0.6)
plt.tight_layout()
plt. show()
# Periodicity Detection
from scipy.signal import find_peaks
# Normalize counts for periodicity detection
normalized_counts = counts / np.max(counts)
peaks, _ = find_peaks(normalized_counts, height=0.5)
plt.figure(figsize=(10, 6))
plt.plot(decimal_values, normalized_counts, color='purple', alpha=0.7, label="Normalized Counts")
plt.scatter(np.array(decimal_values)[peaks], normalized_counts[peaks], color='red', label="Peaks")
plt.xlabel("Decimal Value of Bitstring")
plt.ylabel("Normalized Frequency")
plt.title("Periodicity Detection in Measurement Outcomes")
plt.legend()
plt.grid(True, linestyle='--', alpha=0.6)
plt.tight_layout()
plt. show()
# Histogram of Bitstring Counts
plt.figure(figsize=(12, 6))
plt. bar(bitstrings[:50], counts[:50], color='blue')
plt.xlabel("Bitstrings (Top 50)")
plt.ylabel("Counts")
plt.title("Histogram of Measured Bitstrings")
plt.xticks(rotation=90, fontsize=8)
plt.tight_layout()
plt. show()
# Periodicity Peaks (Fourier Transform)
frequencies = np.fft.fft(counts)
magnitude = np.abs(frequencies)
plt.figure(figsize=(12, 6))
plt.plot(magnitude[:len(magnitude)//2], marker='o')
plt.xlabel("Frequency")
plt.ylabel("Magnitude")
plt.title("Periodicity Peaks (FFT of Counts)")
plt.grid()
plt. show()
# Cumulative Counts
sorted_counts = np.sort(counts)[::-1]
cumulative_counts = np.cumsum(sorted_counts)
plt.figure(figsize=(12, 6))
plt.plot(cumulative_counts, label="Cumulative Counts", color='green')
plt.xlabel("Rank of Bitstrings (Sorted by Counts)")
plt.ylabel("Cumulative Count")
plt.title("Cumulative Distribution of Counts")
plt.legend()
plt.grid()
plt. show()
# Heatmap of Decimal Values vs. Counts
plt.figure(figsize=(12, 6))
plt.hist2d(decimal_values, counts, bins=(50, 50), cmap='plasma', cmin=1)
plt.colorbar(label="Frequency")
plt.xlabel("Decimal Values")
plt.ylabel("Counts")
plt.title("Heatmap of Decimal Values vs. Counts")
plt.tight_layout()
plt. show()
# Heatmap of Count Frequency Distribution (Retained)
unique_counts, freq = np.unique(counts, return_counts=True)
plt.figure(figsize=(10, 6))
plt.imshow(np.array([freq]), cmap="viridis", aspect="auto", interpolation="nearest")
plt.colorbar(label="Frequency")
plt.xticks(ticks=np.arange(len(unique_counts)), labels=unique_counts, rotation=45)
plt.yticks([])
plt.title("Heatmap of Count Frequency Distribution")
plt.xlabel("Unique Count Values")
plt.tight_layout()
plt. show()
# 3D Surface Plot of Counts vs. Decimal Values
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
x, y = np.meshgrid(np.arange(len(decimal_values)), np.arange(len(decimal_values)))
z = np.outer(counts, counts)
ax.plot_surface(x, y, z, cmap='viridis', edgecolor='none', alpha=0.8)
ax.set_xlabel("Decimal Value Index")
ax.set_ylabel("Decimal Value Index")
ax.set_zlabel("Counts Interaction")
plt.title("3D Surface Plot of Counts vs. Decimal Values")
plt. show()
# Logarithmic Plot of Bitstring Counts (Retained)
plt.figure(figsize=(10, 6))
plt.plot(np.sort(counts)[::-1], 'o-', color='purple', alpha=0.7, label="Bitstring Counts (Log Scale)")
plt.yscale("log")
plt.xlabel("Rank (Sorted by Count)")
plt.ylabel("Count (Log Scale)")
plt.title("Logarithmic Plot of Bitstring Counts")
plt.grid(True, linestyle="--", alpha=0.5)
plt.legend()
plt.tight_layout()
plt. show()
# Polar Plot of Periodicity in Measured Outcomes (Retained)
angles = (2 * np.pi * np.array(decimal_values)) / (2**len(bitstrings[0]))
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True)
ax.scatter(angles, counts, c=counts, cmap="plasma", alpha=0.75)
ax.set_theta_zero_location("N")
ax.set_theta_direction(-1)
plt.title("Polar Plot of Periodicity in Measurement Outcomes")
plt.tight_layout()
plt. show()
# End