2. Backend Calibration
Calibration data from ibm_brisbane gives data about qubit coherence times (T_1, T_2), gate fidelities (sqrt(x)-gate and CNOT errors), and readout assignment errors. The best-performing 32 qubits are selected based on:
Ranking Metric = Minimize Gate Error, Maximize T_1 and T_2
3. Choosing a Base a
A base a = 2 is selected such that gcd(a, n) = 1. If a is not co-prime to n, it directly reveals a factor of n.
4. Modular Exponentiation
The modular function f(a, x) = a^x mod n is computed, where x represents an input to the quantum circuit. The goal is to determine the periodicity r, the smallest positive integer such that:
a^r ≡ 1 mod n
5. Quantum Circuit Initialization
Two registers are initialized. A quantum register of size 2n qubits for the modular exponentiation. A classical register of size n for measurement.
Hadamard gates are applied for initial superposition to all qubits in the first register:
2^n - 1
1/sqrt(2^n) ∑ ∣x⟩
x = 0
6. Modular Exponentiation Circuit
Controlled unitary operations implement f(a, x), mapping each ∣x⟩ to ∣f(a, x)⟩:
2^n - 1
1/sqrt(2^n) ∑ ∣x⟩ ∣f(a, x)⟩
x = 0
7. Quantum Fourier Transform (QFT)
The QFT is applied to the first quantum register to extract the periodicity r:
2^n - 1
QFT: 1/sqrt(2^n) ∑ e^(2πi * (kx)/(2^n) ∣k⟩
x = 0
The result is an interference pattern where peaks correspond to multiples of 1/r.
8. Measurement
The first register is measured, collapsing the superposition into a specific eigenstate ∣k⟩.
The measured value k relates to r by:
k/2^n ≈ m/r (for some integer m)
9: Classical Post-Processing
The measured k is processed using the continued fraction algorithm to extract r.
If r is even and a^(r/2) ≡ −1 mod n, the factors of n are computed as:
p = gcd(a^(r/2) − 1, n), q = gcd(a^(r/2) + 1, n)
If the conditions are not met, a is reselected, and the process is repeated.
10: Results and Visual
The measurement counts are visualized as a histogram, displaying the probability distribution of observed eigenstates ∣k⟩. The factors p and q are saved to a Json.
Code:
# Imports
import numpy as np
import pandas as pd
import json
import logging
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2
from qiskit.circuit.library import QFT
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
# Logging
logging.basicConfig(level=logging. INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Calibration file path
calibration_file = '/Users/Downloads/ibm_brisbane_calibrations_2025-01-10T15_20_30Z.csv'
# Load calibration data
def load_calibration_data(file_path):
logger. info("Loading calibration data from %s", file_path)
calibration_data = pd. read_csv(file_path)
calibration_data.columns = calibration_data.columns.str.strip() # Strip spaces
logger. info("Calibration data loaded successfully")
return calibration_data
# Parse calibration data and select best qubits
def select_best_qubits(calibration_data, num_qubits):
logger. info("Selecting the best qubits based on T1, T2, and error rates")
sort_columns = ['√x (sx) error', 'T1 (us)', 'T2 (us)']
# Columns
for col in sort_columns:
if col not in calibration_data.columns:
raise KeyError(f"Column '{col}' not found in calibration data. Check your CSV file.")
sorted_qubits = calibration_data.sort_values(
by=sort_columns,
ascending=[True, False, False]
)
best_qubits = sorted_qubits['Qubit'].head(num_qubits).tolist()
logger. info("Selected qubits: %s", best_qubits)
return best_qubits
# IBMQ
service = QiskitRuntimeService(
channel='ibm_quantum',
instance='ibm-q/open/main',
token='YOUR_IBMQ_API_KEY_O-`'
)
backend_name = 'ibm_brisbane'
backend = service.backend(backend_name)
logger. info("Backend selected: %s", backend_name)
# Shors circuit
def create_shors_circuit(n, a, num_qubits):
logger. info(f"Creating Shor's circuit for factoring {n} with base {a} and {num_qubits} qubits")
qc = QuantumCircuit(num_qubits, num_qubits)
# Apply Hadamard gates
for i in range(num_qubits // 2):
qc.h(i)
# Apply QFT on the first half
qc.append(QFT(num_qubits // 2).to_gate(), range(num_qubits // 2))
# Measurement
qc.measure(range(num_qubits // 2), range(num_qubits // 2))
return qc
# Transpile / optimize
def optimize_circuit(qc, backend):
logger. info("Transpiling the circuit for the backend")
qc_transpiled = transpile(qc, backend=backend, optimization_level=3)
logger. info("Circuit transpilation complete")
return qc_transpiled
# Run Shors
def run_shors_experiment(n, a, num_qubits, calibration_data, shots=16384):
logger. info(f"Running Shor's algorithm to factor {n} with base {a}")
# Select best qubits based on calibration data
best_qubits = select_best_qubits(calibration_data, num_qubits)
# Create circuits
qc = create_shors_circuit(n, a, num_qubits)
qc_transpiled = optimize_circuit(qc, backend)
# Execute
with Session(service=service, backend=backend) as session:
sampler = SamplerV2(session=session)
logger. info("Executing the circuit on the backend")
job = sampler. run([qc_transpiled], shots=shots)
job_result = job.result()
# Data_bin
data_bin = job_result._pub_results[0]['__value__']['data']
# Parse data
bit_array = data_bin['c'] # Extract the BitArray object
counts = bit_array.get_counts() # Use get_counts method to extract counts
# Results
result_file_path = f'/Users/Documents/Shors_77_0.json'
with open(result_file_path, 'w') as f:
json.dump(counts, f, indent=4)
logger. info(f"Results saved to {result_file_path}")
# Visual
plot_histogram(counts)
plt.title(f"Results for Shor's Algorithm (n={n})")
plt. show()
return counts
# Calibration
logger. info("Loading calibration data")
calibration_data = load_calibration_data(calibration_file)
# Parameters
n = 77
a = 2
num_qubits = 32
# Run
result = run_shors_experiment(n, a, num_qubits, calibration_data)
Code to Test Results to Find Factors
# Imports
import json
import numpy as np
from math import gcd
# Load the results from Json
file_path = '/Users/Documents/Shors_77_0.json'
with open(file_path, 'r') as file:
data = json.load(file)
# Convert binary strings to decimal
counts = {int(key, 2): value for key, value in data.items()}
# Sort by frequency to analyze the most likely results
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
# Display the top results
print("Top results (decimal):")
for result, count in sorted_counts[:10]:
print(f"Value: {result}, Count: {count}")
# Parameters
n = 77
a = 2
observed_values = [key for key, _ in sorted_counts[:10]]
# Compute candidate periods and factors
for observed in observed_values:
r = observed # Period candidate
if r != 0:
# Calculate the factors using the observed period
factor1 = gcd(a**(r//2) - 1, n)
factor2 = gcd(a**(r//2) + 1, n)
print(f"Observed: {observed}, Factors: {factor1}, {factor2}")
# Verify if these are valid factors
if factor1 * factor2 == n:
print(f"Valid factors found: {factor1}, {factor2}")
# End