1. Conceptual Foundation
Robinson congruences describe a continuum of null geodesics in spacetime, such as light rays, that exhibit twist or shear. In quantum mechanics, this can be represented by a set of quantum states ∣𝜓_k⟩, where k = 1, 2, …, N. These states encode the light-ray directions and evolve under a parameter representing spacetime curvature, accumulating a geometric phase. This phase is measured using interferometry.
The geometric phase γ(C) acquired by a quantum state ∣ψ(t)⟩ as it traverses a closed path C in parameter space is:
γ(C) = Im ∮_C ⟨ψ(t)∣ ∇_t ∣ψ(t)⟩ dt
The parameter t is curvature κ.
The quantum states ∣ψ_k⟩ represent null directions encoded as superpositions.
3. Qubit Representation of States
The number of Qubits is 7, where each qubit q_k represents a light-ray direction ψ_k.
Each qubit is initialized to a superposition using the Hadamard gate:
∣q_k⟩ = 1/sqrt(2) * (∣0⟩ + ∣1⟩)
4. Encoding Geometric Phase
The geometric phase is encoded by applying controlled phase (CP) gates between a control qubit q_0 and each target qubit q_k (k ≠ 0) with a curvature dependent phase:
CP(q_0, q_k) = e^(iκ⋅(π/(k + 1)))
Here, κ is the curvature parameter. The circuit applies these gates iteratively for k = 1, …, 6 (skipping k = 0).
5. Simulating Curvature via Adiabatic Evolution
The curvature κ is adiabatically varied over time, simulating a changing spacetime background. κ = 1.5 is used as a fixed value in this circuit.
6. Interferometric Measurement of Berry Phase
The control qubit q_0 is entangled with each target qubit using CNOT gates:
CNOT(q_0, q_k), k = 1, …, 6
A Hadamard gate is applied to q_0 to complete the interferometric protocol, enabling phase accumulation measurements.
7. Measurement and Observables
All qubits q_k are measured in the computational basis to extract probabilities of states. The Berry phase is deduced from the interference pattern:
P(∣ψ_k⟩) ∝ cos^2 ((γ(C))/2)
8. Backend-Specific Optimization
The ibm_brisbane calibration data is parsed to select 7 qubits with the best T_1 and T_2 coherence times and lowest error rates. The circuit is transpiled.
9. Execution, Json, Visual
The circuit is run with 16,384 shots. Raw counts are saved to a Json. A histogram is graphed.
Code:
# Imports
import numpy as np
import json
import pandas as pd
import logging
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
# Logging
logging.basicConfig(level=logging. INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load calibration data
def load_calibration_data(file_path):
logger. info("Loading calibration data from %s", file_path)
calibration_data = pd. read_csv(file_path)
calibration_data.columns = calibration_data.columns.str.strip()
logger. info("Calibration data loaded successfully")
return calibration_data
# Parse calibration data
def select_best_qubits(calibration_data, n_qubits):
logger. info("Selecting the best qubits based on T1, T2, and error rates")
qubits_sorted = calibration_data.sort_values(
by=['\u221ax (sx) error', 'T1 (us)', 'T2 (us)'],
ascending=[True, False, False]
)
best_qubits = qubits_sorted['Qubit'].head(n_qubits).tolist()
logger. info("Selected qubits: %s", best_qubits)
return best_qubits
# Load backend calibration data
calibration_file = '/Users/Downloads/ibm_brisbane_calibrations_2025-01-02T01_49_03Z.csv'
calibration_data = load_calibration_data(calibration_file)
# Select best qubits
num_qubits = 7
best_qubits = select_best_qubits(calibration_data, num_qubits)
# IBMQ
logger. info("Setting up IBM Q service")
service = QiskitRuntimeService(
channel='ibm_quantum',
instance='ibm-q/open/main',
token='YOUR_IBMQ_API_KEY_O-`'
)
backend_name = 'ibm_brisbane'
backend = service.backend(backend_name)
logger. info("Backend selected: %s", backend_name)
# Quantum and classical registers
qr = QuantumRegister(num_qubits, 'light_directions')
cr = ClassicalRegister(num_qubits, 'meas')
qc = QuantumCircuit(qr, cr)
# Initialize the quantum states representing light-ray directions
for i in range(num_qubits):
qc.h(qr[i])
# Vary a curvature parameter to encode geometric phase
curvature_param = 1.5
for i in range(1, num_qubits):
qc.cp(curvature_param * (np.pi / (i + 1)), qr[0], qr[i])
# Apply an interferometric protocol for Berry phase measurement
qc.h(qr[0])
for i in range(1, num_qubits):
qc. cx(qr[0], qr[i])
# Measure
qc.measure(qr, cr)
# Transpile
logger. info("Transpiling the quantum circuit for the backend")
qc_transpiled = transpile(qc, backend=backend, optimization_level=3)
logger. info("Circuit transpilation complete")
# Execute
shots = 16384
with Session(service=service, backend=backend) as session:
sampler = SamplerV2(session=session)
logger. info("Executing the circuit on the backend")
job = sampler. run([qc_transpiled], shots=shots)
job_result = job.result()
# Extract BitArray counts
data_bin = job_result._pub_results[0]['__value__']['data']
bit_array = data_bin['meas'] # Extract the BitArray
counts = bit_array.get_counts() # Use get_counts method
# Json
results_data = {"raw_counts": counts}
file_path = '/Users/Documents/Geometric_Phase_RC_0.json'
with open(file_path, 'w') as f:
json.dump(results_data, f, indent=4)
logger. info("Results saved to %s", file_path)
# Visual
plot_histogram(counts)
plt.title("Geometric Phase of Robinson Congruences")
plt. show()
///////////////////////////
Code for All Visuals
# Imports
import json
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# File path
file_path = '/Users/Documents/Geometric_Phase_RC_0.json'
# Load data
def load_data(file_path):
with open(file_path, 'r') as f:
data = json.load(f)
return data["raw_counts"]
# Histogram of Measured States
def plot_histogram_measured_states(counts):
total_counts = sum(counts.values())
sorted_probs = sorted(counts.items(), key=lambda x: x[1], reverse=True)
bitstrings, _ = zip(*sorted_probs)
plt.figure(figsize=(12, 6))
plt. bar(bitstrings[:50], [counts[b] for b in bitstrings[:50]], color='blue', alpha=0.7)
plt.xticks(rotation=90, fontsize=8)
plt.xlabel("Bitstrings")
plt.ylabel("Counts")
plt.title("Histogram of Measured States")
plt.tight_layout()
plt. show()
# Heatmap of Probabilities
def plot_heatmap_probabilities(probabilities):
sorted_probs = sorted(probabilities.items(), key=lambda x: x[1], reverse=True)
_, probs = zip(*sorted_probs)
plt.figure(figsize=(12, 6))
plt.imshow(np.array([list(probs)]), cmap="viridis", aspect="auto")
plt.colorbar(label="Probability")
plt.xlabel("Bitstring Index (sorted by probability)")
plt.ylabel("Probability Density")
plt.title("Heatmap of Probabilities")
plt.tight_layout()
plt. show()
# Dominant States
def plot_dominant_states(counts, top_n=10):
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
top_bitstrings, top_counts = zip(*sorted_counts[:top_n])
plt.figure(figsize=(10, 5))
plt. bar(top_bitstrings, top_counts, color='green', alpha=0.8)
plt.xticks(rotation=45, fontsize=10)
plt.xlabel("Top Bitstrings")
plt.ylabel("Counts")
plt.title(f"Top {top_n} Dominant States")
plt.tight_layout()
plt. show()
# Cumulative Distribution Function
def plot_cumulative_distribution(counts):
total_counts = sum(counts.values())
sorted_counts = np.cumsum([counts[b] for b in sorted(counts.keys())])
sorted_counts_prob = sorted_counts / total_counts
plt.figure(figsize=(10, 5))
plt.plot(range(len(sorted_counts_prob)), sorted_counts_prob, color='red')
plt.xlabel("Bitstring Index (sorted)")
plt.ylabel("Cumulative Probability")
plt.title("Cumulative Distribution Function (CDF)")
plt.grid(True)
plt.tight_layout()
plt. show()
# Probability Distribution Across All States (Line Plot)
def plot_probability_distribution(probabilities):
sorted_probs = sorted(probabilities.items(), key=lambda x: x[1], reverse=True)
_, probs = zip(*sorted_probs)
plt.figure(figsize=(12, 6))
plt.plot(range(len(probs)), probs, marker='o', linestyle='-', color='blue', alpha=0.7)
plt.xlabel("Bitstring Index (sorted by probability)")
plt.ylabel("Probability")
plt.title("Probability Distribution Across All States")
plt.grid(True)
plt.tight_layout()
plt. show()
# Logarithmic Histogram of Measured States
def plot_logarithmic_histogram(counts):
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
bitstrings, _ = zip(*sorted_counts)
plt.figure(figsize=(12, 6))
plt. bar(bitstrings[:50], [np.log10(counts[b]) for b in bitstrings[:50]], color='orange', alpha=0.8)
plt.xticks(rotation=90, fontsize=8)
plt.xlabel("Bitstrings")
plt.ylabel("Log10(Counts)")
plt.title("Logarithmic Histogram of Measured States")
plt.tight_layout()
plt. show()
# State Transition Analysis (Scatter Plot)
def plot_state_transition_analysis(probabilities):
sorted_probs = sorted(probabilities.items(), key=lambda x: x[1], reverse=True)
_, probs = zip(*sorted_probs)
plt.figure(figsize=(12, 6))
plt.scatter(range(len(probs)), probs, color='green', alpha=0.6)
plt.xlabel("Bitstring Index (sorted by probability)")
plt.ylabel("Probability")
plt.title("State Transition Analysis")
plt.grid(True)
plt.tight_layout()
plt. show()
# Probability Deviation Analysis
def plot_probability_deviation_analysis(probabilities):
bitstrings = list(probabilities.keys())
probs = list(probabilities.values())
n = len(probs)
theoretical_phases = [np.cos(i * np.pi / n)**2 for i in range(n)]
scale_factor = max(probs) / max(theoretical_phases)
theoretical_phases_scaled = [p * scale_factor for p in theoretical_phases]
deviations = [abs(p - t) for p, t in zip(probs, theoretical_phases_scaled)]
plt.figure(figsize=(12, 6))
plt.scatter(range(len(deviations)), deviations, color='purple', alpha=0.6)
plt.xlabel("Bitstring Index")
plt.ylabel("Deviation (|Measured - Theoretical|)")
plt.title("Probability Deviation Analysis")
plt.grid(True)
plt.tight_layout()
plt. show()
# Full Probability Heatmap
def plot_full_probability_heatmap(probabilities):
sorted_probs = sorted(probabilities.items(), key=lambda x: x[0])
bitstrings, probs = zip(*sorted_probs)
heatmap_data = np.array(probs).reshape(1, -1)
plt.figure(figsize=(12, 6))
plt.imshow(heatmap_data, cmap="viridis", aspect="auto")
plt.colorbar(label="Probability")
plt.xlabel("Bitstring Index")
plt.ylabel("Probability Density")
plt.title("Full Probability Heatmap (Macro Overview)")
plt.tight_layout()
plt. show()
# Phase Contribution vs. Curvature vs. Counts
def plot_phase_contribution_vs_curvature(counts):
sorted_counts = sorted(counts.items(), key=lambda x: x[0])
bitstrings, counts_sorted = zip(*sorted_counts)
curvatures = [1.5 * (i + 1) / len(bitstrings) for i in range(len(bitstrings))]
phase_contributions = [np.cos(curv)**2 for curv in curvatures]
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection="3d")
for idx, (curv, phase, count) in enumerate(zip(curvatures, phase_contributions, counts_sorted)):
ax. bar([curv], [count], zs=phase, zdir="y", alpha=0.8, color=plt. cm.viridis(phase), edgecolor="k")
ax.set_xlabel("Curvature Parameter")
ax.set_ylabel("Phase Contribution")
ax.set_zlabel("Measured Counts")
ax.set_title("Phase Contribution vs. Curvature vs. Counts")
plt.tight_layout()
plt. show()
# 3D Surface Plot of Probabilities
def plot_3d_surface_probabilities(probabilities):
sorted_probs = sorted(probabilities.items(), key=lambda x: x[0])
bitstrings, probs = zip(*sorted_probs)
indices = np.arange(len(probs))
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111, projection="3d")
X, Y = np.meshgrid(indices, indices)
Z = np.outer(probs, probs)
ax.plot_surface(X, Y, Z, cmap="plasma", alpha=0.8)
ax.set_xlabel("Bitstring Index (X)")
ax.set_ylabel("Bitstring Index (Y)")
ax.set_zlabel("Probability")
ax.set_title("3D Surface Plot of Probabilities")
plt.tight_layout()
plt. show()
# Bitstring Pair Correlation (Scatter Plot)
def plot_bitstring_pair_correlation(counts):
sorted_counts = sorted(counts.items(), key=lambda x: x[0])
_, counts_sorted = zip(*sorted_counts)
correlations = [counts_sorted[i] * counts_sorted[i + 1] for i in range(len(counts_sorted) - 1)]
plt.figure(figsize=(12, 6))
plt.scatter(range(len(correlations)), correlations, color="orange", alpha=0.6)
plt.xlabel("Bitstring Pair Index")
plt.ylabel("Correlation (Count[i] × Count[i+1])")
plt.title("Bitstring Pair Correlation (Scatter Plot)")
plt.grid(True)
plt.tight_layout()
plt. show()
# Main
def main():
counts = load_data(file_path)
total_counts = sum(counts.values())
probabilities = {k: v / total_counts for k, v in counts.items()}
plot_histogram_measured_states(counts)
plot_heatmap_probabilities(probabilities)
plot_dominant_states(counts)
plot_cumulative_distribution(counts)
plot_probability_distribution(probabilities)
plot_logarithmic_histogram(counts)
plot_state_transition_analysis(probabilities)
plot_probability_deviation_analysis(probabilities)
plot_full_probability_heatmap(probabilities)
plot_phase_contribution_vs_curvature(counts)
plot_3d_surface_probabilities(probabilities)
plot_bitstring_pair_correlation(counts)
if __name__ == "__main__":
main()
# End