1. Problem
To make sure optimal circuit execution, backend calibration data is loaded and analyzed. Including:
√x (sx) error: Error rate for single qubit operations.
T_1 (Relaxation time): Time for a qubit to return to its ground state.
T_2 (Decoherence time): Time over which a qubit maintains coherence.
The best qubits are selected based on the following sorting criteria:
Minimize √x error (ascending order).
Maximize T_1 (descending order).
Maximize T_2 (descending order).
Select N + 1 qubits (where N is the number of cities) based on the best T_1, T_2, and lowest error rates.
2. City Representation on the Bloch Sphere
Cities are placed on the surface of a sphere using spherical coordinates (θ, ϕ)
θ: Polar angle.
ϕ: Azimuthal angle.
x = sin(θ) cos(ϕ)
y = sin(θ) sin(ϕ)
z = cos(θ)
3. Quantum Circuit Initialization
Quantum register Q_R of N + 1 qubits (representing cities).
Classical register C_R of N + 1 bits for measurement.
Apply the Hadamard gate to each qubit to create a uniform superposition:
- - - - - - - - - - - - - 2^(N + 1) -1
∣ψ⟩ = 1/sqrt(2^(N + 1)) * ∑ ∣i⟩
- - - - - - - - - - - - - i = 0
4. Encoding Inter-City Distances
Calculate angular distances Δθ between cities based on their dot products:
cos(Δθ) = u ⋅ v
Encode distances as R_y rotations:
R_y(θ) =
[ cos(θ/2), −sin(θ/2)
sin (θ/2), cos(θ/2) ]
5. Entanglement for Pathway Representation
Apply CNOT gates between pairs of qubits to entangle them, representing possible transitions between cities.
6. Noise Simulation
Introduce noise perturbations by applying small random rotations to each qubit:
R_x(π/(16(i + 1)))
R_y(π/(16(i + 1)))
R_z(π/(16(i + 1)))
7. Measurement
Measure all qubits in the computational basis to determine the most probable pathways.
8. Results and Visual
Measurement counts are retrieved. Results are saved to a json. A histogram of the run results is visualized.
Code:
# Imports
import numpy as np
import json
import pandas as pd
import logging
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
from scipy.spatial.transform import Rotation as R
# Logging
logging.basicConfig(level=logging. INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load calibration data
def load_calibration_data(file_path):
logger. info("Loading calibration data from %s", file_path)
calibration_data = pd. read_csv(file_path)
calibration_data.columns = calibration_data.columns.str.strip()
logger. info("Calibration data loaded successfully")
return calibration_data
# Parse calibration data
def select_best_qubits(calibration_data, n_qubits):
logger. info("Selecting the best qubits based on T1, T2, and error rates")
qubits_sorted = calibration_data.sort_values(by=['\u221ax (sx) error', 'T1 (us)', 'T2 (us)'], ascending=[True, False, False])
best_qubits = qubits_sorted['Qubit'].head(n_qubits).tolist()
logger. info("Selected qubits: %s", best_qubits)
return best_qubits
# Backend calibration data
calibration_file = '/Users/Downloads/ibm_brisbane_calibrations_2024-12-19T17_33_02Z.csv'
calibration_data = load_calibration_data(calibration_file)
# Number of cities in the TSP
num_cities = 10
# Select the best qubits
best_qubits = select_best_qubits(calibration_data, num_cities + 1)
# IBMQ
logger. info("Setting up IBM Q service")
service = QiskitRuntimeService(
channel='ibm_quantum',
instance='ibm-q/open/main',
token='YOUR_IBM_API_KEY_O-`'
)
backend_name = 'ibm_brisbane'
backend = service.backend(backend_name)
logger. info("Backend selected: %s", backend_name)
# Quantum and classical registers
qr = QuantumRegister(num_cities + 1, 'city')
cr = ClassicalRegister(num_cities + 1, 'meas')
qc = QuantumCircuit(qr, cr)
# Map cities to Bloch sphere and create initial state
def encode_cities_on_bloch(num_cities):
"""Generates coordinates for cities on a sphere."""
theta = np.linspace(0, np.pi, num_cities)
phi = np.linspace(0, 2 * np.pi, num_cities, endpoint=False)
cities = []
for t, p in zip(theta, phi):
x = np.sin(t) * np.cos(p)
y = np.sin(t) * np.sin(p)
z = np.cos(t)
cities.append((x, y, z))
return cities
cities_coords = encode_cities_on_bloch(num_cities)
logger. info("Encoded cities on Bloch sphere with coordinates: %s", cities_coords)
# Initialize qubits
for i in range(1, num_cities + 1):
qc.h(qr[i])
# Entangle qubits to represent possible transitions between cities
for i in range(1, num_cities + 1):
for j in range(i + 1, num_cities + 1):
qc. cx(qr[i], qr[j])
# Encode distances as rotation angles
def calculate_rotation_angles(cities_coords):
"""Calculate rotation angles based on geodesic distances."""
angles = []
for i in range(len(cities_coords)):
row = []
for j in range(len(cities_coords)):
if i != j:
dot_product = np. dot(cities_coords[i], cities_coords[j])
angle = np.arccos(np.clip(dot_product, -1.0, 1.0))
row.append(angle)
else:
row.append(0)
angles.append(row)
return angles
rotation_angles = calculate_rotation_angles(cities_coords)
logger. info("Calculated rotation angles: %s", rotation_angles)
# Apply rotations to encode distances
for i in range(1, num_cities + 1):
for j in range(1, num_cities + 1):
if i != j:
qc.ry(rotation_angles[i-1][j-1], qr[j])
# Add noise (perturbations)
for i in range(num_cities):
qc.rx(np.pi / (16 * (i + 1)), qr[i])
qc.ry(np.pi / (16 * (i + 1)), qr[i])
qc.rz(np.pi / (16 * (i + 1)), qr[i])
# Measure
qc.measure(qr, cr)
# Transpile
logger. info("Transpiling the quantum circuit for the backend")
qc_transpiled = transpile(qc, backend=backend, optimization_level=3)
logger. info("Circuit transpilation complete")
# Execute
shots = 8192
with Session(service=service, backend=backend) as session:
sampler = SamplerV2(session=session)
logger. info("Executing the circuit on the backend")
job = sampler. run([qc_transpiled], shots=shots)
job_result = job.result()
# Extract counts
bit_array = job_result._pub_results[0]['__value__']['data']['meas'] # Access the 'meas' field
counts = bit_array.get_counts()
# Save json
results_data = {
"counts": counts,
"cities_coordinates": cities_coords,
"rotation_angles": rotation_angles
}
file_path = '/Users/Documents/Non_Euclidean_TSP_Results_0.json'
with open(file_path, 'w') as f:
json.dump(results_data, f, indent=4)
logger. info("Results saved to %s", file_path)
# Visual
plot_histogram(counts)
plt.title("TSP in Non-Euclidean Space: Measurement Results")
plt. show()
Code For All Visuals
# Imports
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import json
import networkx as nx
import seaborn as sns
# Load results
file_path = '/Users/Documents/Non_Euclidean_TSP_Results_0.json'
with open(file_path, 'r') as file:
data = json.load(file)
counts = data['counts']
cities_coords = np.array(data['cities_coordinates'])
rotation_angles = np.array(data['rotation_angles'])
# Histogram of Counts
def plot_histogram_counts(counts):
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)[:20]
bitstrings, values = zip(*sorted_counts)
plt.figure(figsize=(12, 6))
plt. bar(bitstrings, values, color='blue', alpha=0.7)
plt.xticks(rotation=90)
plt.title("Top 20 Quantum States by Counts")
plt.xlabel("Bitstring")
plt.ylabel("Counts")
plt. show()
# 3D Bloch Sphere Representation
def plot_bloch_sphere(cities_coords):
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(cities_coords[:, 0], cities_coords[:, 1], cities_coords[:, 2], color='red', s=50)
ax.set_title("Cities on the Bloch Sphere")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt. show()
# Heatmap of Rotation Angles
def plot_rotation_heatmap(rotation_angles):
plt.figure(figsize=(10, 8))
plt.imshow(rotation_angles, cmap='viridis', interpolation='nearest')
plt.colorbar(label="Rotation Angle (rad)")
plt.title("Heatmap of Geodesic Distances (Rotation Angles)")
plt.xlabel("City Index")
plt.ylabel("City Index")
plt. show()
# Overlay High-Probability Pathways
def plot_high_probability_paths(cities_coords, counts):
top_paths = sorted(counts.items(), key=lambda x: x[1], reverse=True)[:5]
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# Plot cities
ax.scatter(cities_coords[:, 0], cities_coords[:, 1], cities_coords[:, 2], color='red', s=50)
# Overlay pathways
for path, _ in top_paths:
indices = [int(bit) for bit in path]
for i in range(len(indices) - 1):
ax.plot(
[cities_coords[indices[i], 0], cities_coords[indices[i + 1], 0]],
[cities_coords[indices[i], 1], cities_coords[indices[i + 1], 1]],
[cities_coords[indices[i], 2], cities_coords[indices[i + 1], 2]],
color='blue', alpha=0.7
)
ax.set_title("High-Probability Pathways on Bloch Sphere")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt. show()
# Call
plot_histogram_counts(counts)
plot_bloch_sphere(cities_coords)
plot_rotation_heatmap(rotation_angles)
plot_high_probability_paths(cities_coords, counts)
# Probability Distribution of Quantum States (Pie Chart)
def plot_probability_pie(counts):
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)[:10]
labels, values = zip(*sorted_counts)
total = sum(counts.values())
values = [v / total for v in values]
plt.figure(figsize=(8, 8))
plt.pie(values, labels=labels, autopct="%1.1f%%", startangle=140, colors=plt. cm.tab10.colors)
plt.title("Probability Distribution of Top Quantum States")
plt. show()
# 3D Geodesic Distance Network
def plot_geodesic_network(cities_coords, rotation_angles):
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# Add cities
ax.scatter(cities_coords[:, 0], cities_coords[:, 1], cities_coords[:, 2], color='red', s=50, label="Cities")
# Add edges
num_cities = len(cities_coords)
for i in range(num_cities):
for j in range(i + 1, num_cities):
if rotation_angles[i][j] < np.pi / 2:
ax.plot(
[cities_coords[i, 0], cities_coords[j, 0]],
[cities_coords[i, 1], cities_coords[j, 1]],
[cities_coords[i, 2], cities_coords[j, 2]],
color='blue', alpha=0.6
)
ax.set_title("3D Geodesic Distance Network")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt.legend()
plt. show()
# Cumulative Probability of Top Pathways
def plot_cumulative_probability(counts):
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
labels, values = zip(*sorted_counts)
total = sum(values)
cumulative_probs = np.cumsum(values) / total
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(cumulative_probs) + 1), cumulative_probs, marker='o', linestyle='-', color='green')
plt.title("Cumulative Probability of Top Pathways")
plt.xlabel("Number of Pathways")
plt.ylabel("Cumulative Probability")
plt.grid(True)
plt. show()
# Histogram of City Pairs by Distance
def plot_distance_histogram(rotation_angles):
distances = rotation_angles[np.triu_indices(len(rotation_angles), k=1)]
plt.figure(figsize=(10, 6))
plt.hist(distances, bins=20, color='purple', alpha=0.7)
plt.title("Histogram of City Pairs by Distance")
plt.xlabel("Geodesic Distance (rad)")
plt.ylabel("Frequency")
plt.grid(True)
plt. show()
# Call
plot_probability_pie(counts)
plot_geodesic_network(cities_coords, rotation_angles)
plot_cumulative_probability(counts)
plot_distance_histogram(rotation_angles)
# Scatter Plot of City Probabilities
def plot_city_probabilities(counts, cities_coords):
total_counts = sum(counts.values())
probabilities = {key: value / total_counts for key, value in counts.items()}
city_probs = [sum(probabilities.get(bin(i)[2:].zfill(len(cities_coords)), 0) for i in range(len(cities_coords))) for _ in range(len(cities_coords))]
plt.figure(figsize=(8, 6))
plt.scatter(range(len(city_probs)), city_probs, color='blue', s=100, alpha=0.7)
plt.title("Scatter Plot of City Probabilities")
plt.xlabel("City Index")
plt.ylabel("Probability")
plt.grid(True)
plt. show()
# Correlation Matrix Heatmap
def plot_correlation_heatmap(rotation_angles):
correlation_matrix = np.corrcoef(rotation_angles)
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Matrix of Geodesic Distances")
plt.xlabel("City Index")
plt.ylabel("City Index")
plt. show()
# Pathway Probability Bar Chart
def plot_pathway_bar_chart(counts):
sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)[:10]
pathways, values = zip(*sorted_counts)
total_counts = sum(counts.values())
probabilities = [v / total_counts for v in values]
plt.figure(figsize=(12, 6))
plt. bar(pathways, probabilities, color='green', alpha=0.7)
plt.title("Pathway Probabilities (Top 10)")
plt.xlabel("Pathway")
plt.ylabel("Probability")
plt.xticks(rotation=90)
plt. show()
# City Transition Network Graph
def plot_city_transition_network(cities_coords, rotation_angles):
import networkx as nx
G = nx.Graph()
num_cities = len(cities_coords)
# Add nodes
for i in range(num_cities):
G.add_node(i, pos=cities_coords[i])
# Add edges
for i in range(num_cities):
for j in range(i + 1, num_cities):
if rotation_angles[i][j] < np.pi / 2:
G.add_edge(i, j, weight=rotation_angles[i][j])
# Draw graph
pos = {i: (cities_coords[i][0], cities_coords[i][1]) for i in range(num_cities)}
plt.figure(figsize=(10, 8))
plt.title("City Transition Network")
nx.draw(G, pos, with_labels=True, node_color='red', edge_color='blue', node_size=500, font_size=10, alpha=0.7)
plt. show()
# Call
plot_city_probabilities(counts, cities_coords)
plot_correlation_heatmap(rotation_angles)
plot_pathway_bar_chart(counts)
plot_city_transition_network(cities_coords, rotation_angles)
# End