1. Problem Setup
Plasma turbulence involves the chaotic movement of charged particles in a plasma due to electromagnetic forces, leading to nonlinear energy transfer across scales. The primary goal is to model the energy distribution and dissipation in turbulent plasmas using quantum mechanics principles.
The system is divided into:
a. Clusters of qubits representing localized turbulent regions.
b. Interactions between clusters simulating large scale energy cascades.
2. Mathematical Representation
The dynamics of plasma turbulence are derived from the Navier-Stokes equations coupled with Maxwell’s equations in fluid form:
(∂v/∂v) + v ∇v = − (∇P/ρ) + ν∇²v + F
where:
v is the velocity field
P is pressure
ρ is density
ν is the kinematic viscosity
F represents external forces
To simulate this system, discretize the equations using Carleman linearization, converting the nonlinear terms into linear terms suitable for quantum circuits. These linearized dynamics are represented as unitary evolutions.
3. Qubit Allocation
127 qubits are divided into clusters of 7 qubits each.
Each cluster represents a local turbulent region, and inter-cluster gates represent interactions between these regions.
4. Circuit Initialization
The quantum circuit begins with an initial superposition state:
∣ψ_(init)⟩ = H^(⊗n) ∣0⟩^(⊗n)
where H is the Hadamard gate, applied to all n = 127 qubits. This initializes a uniform probability distribution over all possible quantum states.
5. Intra-Cluster Turbulence Dynamics
Each cluster evolves independently using single qubit rotations and entangling gates:
Single-qubit rotations: These simulate local turbulence evolution:
R_x(θ) = e^(−iθX/2)
R_z(ϕ) = e^(−iϕZ/2)
Here, θ = π/(t + 1) and ϕ = 2π/cluster_size.
Entangling gates: Controlled-Z (CZ) gates are applied between adjacent qubits within each cluster to simulate nonlinear coupling.
6. Inter-Cluster Energy Transfer
To simulate large-scale interactions, CZ gates are applied between qubits at the boundaries of adjacent clusters:
CZ : ∣q_1, q_2⟩ → (−1)^(q_1q_2) ∣q_1, q_2⟩
7. Time Evolution
The circuit evolves over multiple timesteps t = 1, 2, …, T, where T = 5. For each timestep:
a. Apply intra-cluster gates (local dynamics)
b. Apply inter-cluster gates (large-scale coupling)
The quantum state at any timestep t is:
∣ψ_t⟩ = U_(global) U_(local) ∣ψ_(t − 1)⟩,
where U_(local) and U_(global) are the unitary operators corresponding to intra- and inter-cluster gates.
8. Measurement
At the end of the evolution, all qubits are measured in the computational basis:
∣ψ_(final)⟩ → {0, 1}^(127)
The measurement results represent the distribution of states after the turbulent dynamics.
9. Results Processing and Visual
The raw measurement data (bitstrings) are counted to determine the state probabilities:
P(x) = Counts(x)/Total_Shots
where x is a 127-bit string. This distribution is analyzed to extract patterns related to energy distribution and dissipation. The results are saved as a json and a histogram is visualized of shot counts.
Code:
Code (Main Circuit)
# Imports
import numpy as np
import json
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2
import csv
import logging
from collections import Counter
from qiskit.visualization import plot_histogram
# Parse calibration
def parse_field(field_str, parser=float, separator=";"):
values = [parser(item.split(":")[1]) for item in field_str.split(separator) if ":" in item]
return max(values) if values else 0.0
# Load calibration
def load_calibration_data(file_path):
calibration_data = {}
with open(file_path, 'r') as file:
reader = csv.DictReader(file)
for row in reader:
qubit = int(row['Qubit'])
calibration_data[qubit] = {
'T1': float(row['T1 (us)'] or 0),
'T2': float(row['T2 (us)'] or 0),
'readout_error': float(row['Readout assignment error '] or 0),
'sx_error': float(row['√x (sx) error '] or 0),
'ecr_error': parse_field(row['ECR error '] or ""),
'gate_time': parse_field(row['Gate time (ns)'] or "", parser=float)
}
return calibration_data
# Select best qubits based on error rates / coherence
def select_best_qubits(calibration_data, num_qubits):
sorted_qubits = sorted(
calibration_data.items(),
key=lambda x: (x[1]['sx_error'], -x[1]['T1'], -x[1]['T2'])
)
return [q[0] for q in sorted_qubits[:num_qubits]]
# Hierarchical plasma turbulence
def create_hierarchical_turbulence_circuit(num_qubits, cluster_size, timesteps):
qc = QuantumCircuit(num_qubits, num_qubits)
# Initialize clusters with superposition
for qubit in range(num_qubits):
qc.h(qubit)
# Intra-cluster turbulence dynamics
for t in range(timesteps):
for cluster_start in range(0, num_qubits, cluster_size):
for qubit in range(cluster_start, min(cluster_start + cluster_size, num_qubits) - 1):
qc. cz(qubit, qubit + 1)
qc.rx(np.pi / (t + 1), qubit)
qc.rz(2 * np.pi / cluster_size, qubit)
# Inter-cluster interactions
for cluster_start in range(0, num_qubits - cluster_size, cluster_size):
if cluster_start + cluster_size < num_qubits:
qc. cz(cluster_start, cluster_start + cluster_size)
# Measurement
qc.measure(range(num_qubits), range(num_qubits))
return qc
# Logging
logging.basicConfig(level=logging. INFO)
logger = logging.getLogger(__name__)
# Calibration data
calibration_file = '/Users/Downloads/ibm_brisbane_calibrations_2024-12-11T20_28_38Z.csv'
calibration_data = load_calibration_data(calibration_file)
# Parameters
num_qubits = 127
cluster_size = 7
timesteps = 5
shots = 8192
# Select the best qubits
selected_qubits = select_best_qubits(calibration_data, num_qubits)
# IBMQ
service = QiskitRuntimeService(
channel='ibm_quantum',
instance='ibm-q/open/main',
token='YOUR_IBMQ_API_O-`'
)
# Backend
backend_name = 'ibm_brisbane'
backend = service.backend(backend_name)
# Tanspile
qc = create_hierarchical_turbulence_circuit(num_qubits, cluster_size, timesteps)
transpiled_qc = transpile(qc, backend=backend, initial_layout=selected_qubits, optimization_level=3)
# Execute
with Session(service=service, backend=backend) as session:
sampler = SamplerV2(session=session)
logger. info("Executing hierarchical plasma turbulence simulation on ibm_sherbrooke...")
job = sampler. run([transpiled_qc], shots=shots)
job_result = job.result()
# Results
counts = dict(Counter(job_result._pub_results[0]['__value__']['data'].c.get_bitstrings()))
results_data = {"counts": counts}
output_file = '/Users/Documents/quantum_plasma_turbulence_results_0.json'
with open(output_file, 'w') as f:
json.dump(results_data, f, indent=4)
# Plot results
plot_histogram(counts)
plt.title("Hierarchical Plasma Turbulence Simulation Results")
plt. show()
logger. info("Experiment completed successfully.")
Visual Code 1
# Imports
import json
import matplotlib.pyplot as plt
import numpy as np
# Load results
file_path = '/Users/Documents/quantum_plasma_turbulence_results_0.json'
with open(file_path, 'r') as file:
results_data = json.load(file)
# Extract counts
counts = results_data['counts']
# Normalize counts to probabilities
total_shots = sum(counts.values())
probabilities = {bitstring: count / total_shots for bitstring, count in counts.items()}
# Compute entropy of distribution
entropy = -sum(p * np.log2(p) for p in probabilities.values())
# Histogram of probabilities
prob_values = list(probabilities.values())
plt.figure(figsize=(12, 6))
plt.hist(prob_values, bins=50, color='blue', alpha=0.7)
plt.title('Distribution of Measured Quantum State Probabilities')
plt.xlabel('Probability')
plt.ylabel('Frequency')
plt.grid(True)
plt. show()
# Heatmap of qubit correlations
qubit_matrix = np.array([list(map(int, list(bitstring))) for bitstring in probabilities.keys()])
correlation_matrix = np.corrcoef(qubit_matrix.T)
plt.figure(figsize=(10, 8))
plt.imshow(correlation_matrix, cmap='viridis', aspect='auto')
plt.colorbar(label='Correlation Coefficient')
plt.title('Qubit Correlation Heatmap')
plt.xlabel('Qubit Index')
plt.ylabel('Qubit Index')
plt. show()
# Print entropy result
print(f"Entropy of the distribution: {entropy}")
Visual Code 2
# Imports
import json
import matplotlib.pyplot as plt
import numpy as np
import networkx as nx
from scipy.cluster.hierarchy import linkage, fcluster
from collections import Counter
# Load results
file_path = '/Users/Documents/quantum_plasma_turbulence_results_0.json'
with open(file_path, 'r') as file:
results_data = json.load(file)
# Extract counts
counts = results_data['counts']
# Normalize counts to probabilities
total_shots = sum(counts.values())
probabilities = {bitstring: count / total_shots for bitstring, count in counts.items()}
# Convert bitstrings into a matrix of qubit states (0s and 1s) for correlation analysis
qubit_matrix = np.array([list(map(int, list(bitstring))) for bitstring in probabilities.keys()])
correlation_matrix = np.corrcoef(qubit_matrix.T)
# Cluster Analysis (Bar Chart)
Z = linkage(correlation_matrix, method='ward')
clusters = fcluster(Z, t=correlation_threshold, criterion='distance')
cluster_counts = Counter(clusters)
plt.figure(figsize=(10, 6))
plt. bar(cluster_counts.keys(), cluster_counts.values(), color='blue', alpha=0.7)
plt.title('Cluster Sizes Based on Qubit Correlations')
plt.xlabel('Cluster Index')
plt.ylabel('Cluster Size')
plt.grid(True)
plt. show()
# Bitstring Probability Distribution (Logarithmic)
sorted_probabilities = sorted(probabilities.values(), reverse=True)
plt.figure(figsize=(12, 6))
plt.plot(sorted_probabilities, marker='o', markersize=3, linestyle='-', color='blue', alpha=0.7)
plt.yscale('log')
plt.title('Logarithmic Bitstring Probability Distribution')
plt.xlabel('Bitstring Index (Sorted)')
plt.ylabel('Probability (Log Scale)')
plt.grid(True, which='both', linestyle='--', linewidth=0.5)
plt. show()
# Heatmap of High Probability States
top_bitstrings = sorted(probabilities.items(), key=lambda x: x[1], reverse=True)[:20]
top_states = np.array([list(map(int, list(bitstring))) for bitstring, _ in top_bitstrings])
plt.figure(figsize=(12, 8))
plt.imshow(top_states, cmap='Blues', aspect='auto', interpolation='none')
plt.colorbar(label='Qubit State (0 or 1)')
plt.title('Heatmap of High-Probability States')
plt.xlabel('Qubit Index')
plt.ylabel('Bitstring Rank')
plt.xticks(range(top_states.shape[1]), fontsize=8, rotation=90)
plt.yticks(range(len(top_bitstrings)), [f"#{i+1}" for i in range(len(top_bitstrings))], fontsize=8)
plt. show()
# Qubit Entanglement Heatmap
mutual_info_matrix = -np.log2(np.abs(correlation_matrix + 1e-9)) # Mutual information calculation
np.fill_diagonal(mutual_info_matrix, 0)
plt.figure(figsize=(10, 8))
plt.imshow(mutual_info_matrix, cmap='coolwarm', aspect='auto', interpolation='none')
plt.colorbar(label='Mutual Information')
plt.title('Qubit Entanglement Heatmap')
plt.xlabel('Qubit Index')
plt.ylabel('Qubit Index')
plt. show()
# State Probability Evolution
sorted_probs = sorted(probabilities.values(), reverse=True)
cumulative_probs = np.cumsum(sorted_probs)
plt.figure(figsize=(12, 6))
plt.plot(cumulative_probs, color='blue', linewidth=2)
plt.title('State Probability Evolution')
plt.xlabel('State Rank (Sorted)')
plt.ylabel('Cumulative Probability')
plt.grid(True, linestyle='--', linewidth=0.5)
plt. show()
# Binary Pattern Frequency
top_bitstrings = [bitstring for bitstring, _ in top_states]
substring_length = 3
substring_counts = Counter()
for bitstring in top_bitstrings:
for i in range(len(bitstring) - substring_length + 1):
substring = bitstring[i:i + substring_length]
substring_counts[substring] += 1
# Sort and plot top 10 substrings
most_common_substrings = substring_counts.most_common(10)
labels, values = zip(*most_common_substrings)
plt.figure(figsize=(10, 6))
plt. bar(labels, values, color='blue', alpha=0.7)
plt.title('Binary Pattern Frequency in Dominant States')
plt.xlabel('Binary Pattern')
plt.ylabel('Frequency')
plt.grid(axis='y', linestyle='--', linewidth=0.5)
plt. show()
# Probability Heatmap Across All States
sorted_indices = np.argsort(state_probs)[::-1] # Sort states by probability (descending)
sorted_probs = np.array(state_probs)[sorted_indices]
heatmap_matrix = np.array([list(map(int, state_list[i])) for i in sorted_indices[:100]]) # Top 100 states
plt.figure(figsize=(12, 8))
plt.imshow(heatmap_matrix, cmap='Blues', aspect='auto', interpolation='none')
plt.colorbar(label='Qubit State (0 or 1)')
plt.title('Probability Heatmap Across Top 100 States')
plt.xlabel('Qubit Index')
plt.ylabel('State Rank')
plt. show()
# Frequency of State Transitions (Hamming Distance)
hamming_distances = []
for i, state1 in enumerate(state_list):
for state2 in state_list[i + 1:]:
hamming_distances.append(int(hamming(list(map(int, state1)), list(map(int, state2))) * len(state1)))
hamming_counts = np.bincount(hamming_distances)
plt.figure(figsize=(10, 6))
plt. bar(range(len(hamming_counts)), hamming_counts, color='blue', alpha=0.7)
plt.title('Frequency of State Transitions by Hamming Distance')
plt.xlabel('Hamming Distance')
plt.ylabel('Frequency')
plt.grid(axis='y', linestyle='--', linewidth=0.5)
plt. show()
# Correlation Network Density
correlation_matrix = np.corrcoef(qubit_matrix.T)
thresholds = np.linspace(0, 1, 50)
edge_counts = []
for threshold in thresholds:
edge_count = np.sum(np.abs(correlation_matrix) > threshold) - len(correlation_matrix)
edge_counts.append(edge_count / 2)
plt.figure(figsize=(12, 6))
plt.plot(thresholds, edge_counts, marker='o', color='blue', alpha=0.7)
plt.title('Correlation Network Density')
plt.xlabel('Correlation Threshold')
plt.ylabel('Number of Edges')
plt.grid(True, linestyle='--', linewidth=0.5)
plt. show()
# Qubit Stability Analysis
stability = (qubit_matrix == qubit_matrix[0]).mean(axis=0)
plt.figure(figsize=(10, 6))
plt. bar(range(len(stability)), stability, color='blue', alpha=0.7)
plt.title('Qubit Stability Analysis')
plt.xlabel('Qubit Index')
plt.ylabel('Stability (%)')
plt.grid(axis='y', linestyle='--', linewidth=0.5)
plt. show()
# 3D Probability Landscape
x = np.arange(qubit_matrix.shape[1])
y = np.arange(len(state_probs))
x, y = np.meshgrid(x, y)
z = np.array([state_probs[i] * qubit_matrix[i] for i in range(len(state_probs))])
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x, y, z, cmap='viridis')
ax.set_title('3D Probability Landscape')
ax.set_xlabel('Qubit Index')
ax.set_ylabel('State Index')
ax.set_zlabel('Probability')
plt. show()
# Qubit State Heatmap
timesteps = 10
# Extract bitstrings and probabilities
bitstrings = list(results_data['counts'].keys())
bit_probs = list(results_data['counts'].values())
bit_probs = np.array(bit_probs) / sum(bit_probs)
# Sort bitstrings by their probabilities in descending order
sorted_indices = np.argsort(bit_probs)[::-1] # Sort indices by probability (highest to lowest)
selected_bitstrings = [bitstrings[i] for i in sorted_indices[:timesteps]]
# Convert bitstrings into a binary matrix for heatmap visualization
state_evolution = np.array([list(map(int, bitstring)) for bitstring in selected_bitstrings])
# Plot heatmap
plt.figure(figsize=(12, 8))
plt.imshow(state_evolution, cmap='binary', aspect='auto', interpolation='none')
plt.colorbar(label='Qubit State (0 or 1)')
plt.title('Qubit State Heatmap Across Time')
plt.xlabel('Qubit Index')
plt.ylabel('Timestep')
plt. show()
# Energy Distribution Across Clusters
Z = linkage(qubit_matrix, method='ward')
clusters = fcluster(Z, t=10, criterion='distance')
cluster_counts = Counter(clusters)
cluster_energies = {cluster: 0 for cluster in cluster_counts.keys()}
# Calculate energy distribution across clusters
for state, cluster in zip(state_probs, clusters):
cluster_energies[cluster] += state
# Plot cluster energy distribution
plt.figure(figsize=(10, 6))
plt. bar(cluster_energies.keys(), cluster_energies.values(), color='blue', alpha=0.7)
plt.title('Energy Distribution Across Clusters')
plt.xlabel('Cluster Index')
plt.ylabel('Total Energy')
plt.grid(axis='y', linestyle='--', linewidth=0.5)
plt. show()
# End.