1. Initialization of the Twistor Network
Initialize each qubit in a superposition state to model the quantum nature of twistors. In twistor theory, twistors are complex objects that can exist in multiple states simultaneously.
The initial state of each qubit is ∣0⟩. Applying the Hadamard gate H to each qubit puts it into a superposition:
H∣0⟩ = 1/sqrt(2) * (∣0⟩ + ∣1⟩)
This superposition state represents the twistor's ability to exist in multiple states.
We apply the Hadamard gate H to all 127 qubits in the circuit:
qc.h(qubit) for each qubit in the range 0 to 126
2. Entanglement to Model Twistor Propagation
We Model the propagation of twistors between nodes by introducing entanglement between pairs of qubits. In twistor theory, the connections between twistors are essential in defining their relationships and interactions.
Entanglement is achieved using the Controlled-Z gate (CZ). When applied to a pair of qubits, it creates a state where the two qubits are interdependent:
CZ(∣a⟩ ⊗ ∣b⟩) = (−1)^(ab) ∣a⟩ ⊗ ∣b⟩
where a and b are the states of the first and second qubits.
We apply the CZ gate between adjacent pairs of qubits:
qc. cz(qubit, qubit + 1) for qubits in the range 0 to 125
3. Simulating Abstract Quantum Gravitational Effects with Rotation Gates
Introduce abstract quantum gravitational effects by applying random rotations to each qubit. These rotations represent the influence of a quantum gravitational background on the twistor network, such as curvature.
The rotations around the X, Y, and Z axes are represented by the gates RX(θ_x), RY(θ_y), and RZ(θ_z), where θ_x, θ_y, and θ_z are randomly chosen angles:
RX(θ_x) = e^((−iθ_x * X)/2)
RY(θ_y) = e^((−iθ_y * Y)/2)
RZ(θ_z) = e^((−iθ_z * Z)/2)
For each qubit, we apply the rotation gates with random angles:
qc.rx(θ_x, qubit)
qc.ry(θ_y, qubit)
qc.rz(θ_z, qubit) where θ_x, θ_y, θ_z ∼ Uniform(0, 2π)
4. Additional Entanglement to Model Complex Interactions
We introduce further entanglement between qubits to model more complex interactions within the twistor network, reflecting higher-order effects in quantum gravity.
The Controlled-X (CNOT) gate is used to create additional entanglement between qubits that are not directly adjacent:
CNOT(∣a⟩ ⊗ ∣b⟩) = ∣a⟩ ⊗ ∣ a ⊕ b⟩
where ⊕ denotes a XOR operation.
We apply the CNOT gate between every third qubit:
qc. cx(qubit, qubit + 2) for qubits in the range 0 to 124
5. Measurement of All Qubits
Measure the final state of each qubit to analyze the behavior of the twistor network under the influence of modeled quantum gravitational effects.
The measurement collapses each qubit into either ∣0⟩ or ∣1⟩, providing a classical bit for each qubit:
M(∣ψ⟩)= {
∣0⟩ with probability ∣⟨0 ∣ ψ⟩∣^2
∣1⟩ with probability ∣⟨1 ∣ ψ⟩∣^2
Measure all qubits and store the results in a classical register:
qc.measure(range(num_qubits), range(num_qubits))
6. Transpilation and Execution on IBM's ibm_kyoto
Optimize the quantum circuit for execution on ibm_kyoto.
Transpilation optimizes the quantum gates and their layout to reduce error rates and execution time:
qc → transpiled_qc = Transpile(qc, backend = ibm_kyoto, optimization_level = 3)
The transpiled circuit is then executed on the backend with 8192 shots (repetitions):
job = sampler. run([transpiled_qc], shots = 8192)
7. Analysis and Result Visualization
The counts of the measurement outcomes are extracted, and a histogram is plotted to visualize the distribution.
The measurement results are saved to a JSON.
Code:
# imports
import numpy as np
from qiskit import QuantumCircuit, ClassicalRegister, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2
from qiskit.visualization import plot_histogram
import json
import matplotlib.pyplot as plt
# Initialize Qiskit Runtime Service
service = QiskitRuntimeService(
channel='ibm_quantum',
instance='ibm-q/open/main',
token='YOUR_IBMQ_KEY_O-`'
)
# Define the backend
backend = service.backend('ibm_kyoto')
# Create a Quantum Circuit with 127 qubits
num_qubits = 127
qc = QuantumCircuit(num_qubits)
# Classical register for measurement
classical_reg = ClassicalRegister(num_qubits)
qc.add_register(classical_reg)
# Step 1: Initialize each twistor node in superposition
for qubit in range(num_qubits):
qc.h(qubit) # Hadamard gate to create superposition
# Step 2: Model twistor propagation by introducing entanglement
for qubit in range(0, num_qubits - 1, 2):
qc. cz(qubit, qubit + 1) # Controlled-Z gate for entanglement
# Step 3: Apply rotations to model quantum gravitational effects
for qubit in range(num_qubits):
theta_x = np.random.uniform(0, 2 * np.pi)
theta_y = np.random.uniform(0, 2 * np.pi)
theta_z = np.random.uniform(0, 2 * np.pi)
qc.rx(theta_x, qubit)
qc.ry(theta_y, qubit)
qc.rz(theta_z, qubit)
# Step 4: Add additional entanglement to model more complex interactions
for qubit in range(0, num_qubits - 2, 3):
qc. cx(qubit, qubit + 2) # Controlled-X gate for further entanglement
# Step 5: Measure all qubits
qc.measure(range(num_qubits), range(num_qubits))
# Transpile the circuit on ibm_kyoto
transpiled_qc = transpile(qc, backend=backend, optimization_level=3)
# Execution on backend with SamplerV2
with Session(service=service, backend=backend) as session:
sampler = SamplerV2(session=session)
# Run the circuit
job = sampler. run([transpiled_qc], shots=8192)
job_result = job.result()
# Retrieve the classical register name
classical_register = qc.cregs[0].name
# Extract counts for the first (and only) pub result
pub_result = job_result[0].data[classical_register].get_counts()
# Save the results to JSON
results_data = {
"raw_counts": pub_result
}
file_path = '/Users/Documents/gravitational_instanton_results.json'
with open(file_path, 'w') as f:
json.dump(results_data, f, indent=4)
# Plotting the results
plot_histogram(pub_result)
plt. show()
# End.
///////////////////////////////////////////////////////////////////
Histogram, Heatmap of Qubit Correlations, Entropy Analysis, and State Distribution Analysis (Hamming Weight) Visuals from Run Data.
# imports
import json
import numpy as np
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import entropy
# Load results from JSON
file_path = '/Users/Documents/gravitational_instanton_results.json'
with open(file_path, 'r') as f:
results_data = json.load(f)
# Extract raw counts from the results data
raw_counts = results_data["raw_counts"]
# Display the raw counts to understand the distribution
print("Raw counts from the experiment:")
print(raw_counts)
# Total number of qubits
num_qubits = len(next(iter(raw_counts.keys())))
# 1. Histogram of Measurement Outcomes
plt.figure(figsize=(12, 8))
plot_histogram(raw_counts)
plt.title("Histogram of Measurement Outcomes")
plt. show()
# 2. Heatmap of Qubit Correlations
# Create a correlation matrix from the raw counts
correlation_matrix = np.zeros((num_qubits, num_qubits))
for outcome, count in raw_counts.items():
outcome_array = np.array([int(bit) for bit in outcome])
for i in range(num_qubits):
for j in range(num_qubits):
if i != j:
correlation_matrix[i, j] += outcome_array[i] * outcome_array[j] * count
# Normalize the correlation matrix
correlation_matrix /= sum(raw_counts.values())
# Plot the heatmap of the correlation matrix
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, cmap='coolwarm', annot=False)
plt.title("Heatmap of Qubit Correlations")
plt. show()
# 3. Entropy Analysis
# Calculate the probability distribution from raw counts
total_shots = sum(raw_counts.values())
probability_distribution = np.array([count / total_shots for count in raw_counts.values()])
# Calculate entropy of the system
system_entropy = entropy(probability_distribution, base=2)
# Display entropy
print(f"System Entropy: {system_entropy:.4f} bits")
# Visualize the entropy on a bar chart
plt.figure(figsize=(8, 6))
plt. bar(["Entropy"], [system_entropy], color='teal')
plt.title("Entropy of the Twistor Network")
plt.ylabel("Entropy (bits)")
plt. show()
# 4. State Distribution Analysis (Hamming Weight)
# Calculate the Hamming weight for each outcome and count the occurrences
hamming_weights = {}
for outcome, count in raw_counts.items():
weight = outcome.count('1')
if weight in hamming_weights:
hamming_weights[weight] += count
else:
hamming_weights[weight] = count
# Normalize the Hamming weight distribution
for weight in hamming_weights:
hamming_weights[weight] /= total_shots
# Plot the distribution of Hamming weights
plt.figure(figsize=(10, 6))
plt. bar(hamming_weights.keys(), hamming_weights.values(), color='coral')
plt.title("Distribution of Hamming Weights")
plt.xlabel("Hamming Weight")
plt.ylabel("Probability")
plt. show()
# End.
////////////////////////////////////////////////////////////////
Bitstring Cluster Analysis, Distribution of Hamming Distances, and Fourier Transform of Bitstrings Visuals from Run Data
# imports
import json
import numpy as np
import matplotlib.pyplot as plt
from itertools import combinations
# Load the results from JSON
file_path = '/Users/Documents/qft_twistor_experiment_results.json'
with open(file_path, 'r') as file:
results = json.load(file)
# Extract raw counts
counts = results['raw_counts']
# Convert bitstrings to a list of integers
bitstrings = list(counts.keys())
bitstring_frequencies = list(counts.values())
# Convert bitstrings to numpy array
bit_array = np.array([[int(bit) for bit in bitstring] for bitstring in bitstrings])
# Visualization 1: Bitstring Cluster Analysis
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
# Apply PCA to reduce dimensionality
pca = PCA(n_components=2)
bitstring_pca = pca. fit_transform(bit_array)
# Apply KMeans clustering
kmeans = KMeans(n_clusters=5)
clusters = kmeans. fit_predict(bitstring_pca)
# Plot the PCA-transformed bitstrings
plt.figure(figsize=(10, 6))
plt.scatter(bitstring_pca[:, 0], bitstring_pca[:, 1], c=clusters, cmap='viridis')
plt.title('Bitstring Cluster Analysis with PCA')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.colorbar(label='Cluster')
plt. show()
# Visualization 2: Distribution of Hamming Distances
def hamming_distance(s1, s2):
"""Calculate the Hamming distance between two bitstrings."""
return sum(c1 != c2 for c1, c2 in zip(s1, s2))
# Calculate all pairwise Hamming distances
hamming_distances = [hamming_distance(b1, b2) for b1, b2 in combinations(bitstrings, 2)]
# Plot the distribution of Hamming distances
plt.figure(figsize=(10, 6))
plt.hist(hamming_distances, bins=range(128), color='purple', edgecolor='black')
plt.xlabel('Hamming Distance')
plt.ylabel('Frequency')
plt.title('Distribution of Hamming Distances Between Bitstrings')
plt. show()
# Visualization 3: Fourier Transform of Bitstrings
def bitstring_to_int(bitstring):
"""Convert a bitstring to an integer."""
return int(bitstring, 2)
# Convert bitstrings to integers
bitstring_ints = [bitstring_to_int(bitstring) for bitstring in bitstrings]
# Apply Fourier transform
fft_result = np.fft.fft(bitstring_ints)
fft_magnitude = np.abs(fft_result)
# Plot the magnitude of the Fourier transform
plt.figure(figsize=(10, 6))
plt.plot(fft_magnitude, color='orange')
plt.xlabel('Frequency Component')
plt.ylabel('Magnitude')
plt.title('Fourier Transform of Bitstrings')
plt. show()
# End.